About this Journal Submit a Manuscript Table of Contents
ISRN Geometry
Volume 2011 (2011), Article ID 505161, 16 pages
http://dx.doi.org/10.5402/2011/505161
Research Article

On Almost 𝝋 -Lagrange Spaces

Department of Mathematics, University of Allahabad, Allahabad 211 002, India

Received 12 October 2011; Accepted 13 November 2011

Academic Editors: A. Belhaj and M. Margenstern

Copyright © 2011 P. N. Pandey and Suresh K. Shukla. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Miron, “A lagrangian theory of relativity I,” Analele Ştiinţifice ale Universităţii Al. I. Cuza din Iaşi Secţiunea I a Matematică, vol. 32, no. 2, pp. 37–62, 1986.
  2. R. Miron, “A lagrangian theory of relativity II,” Analele Ştiinţifice ale Universităţii Al. I. Cuza din Iaşi Secţiunea I a Matematică, vol. 32, no. 3, pp. 7–16, 1986.
  3. B. Tiwari, “On generalized Lagrange spaces and corresponding Lagrange spaces arising from a generalized Finsler space,” The Journal of the Indian Mathematical Society, vol. 76, no. 1–4, pp. 169–176, 2009.
  4. C. Frigioiu, “Lagrangian geometrization in mechanics,” Tensor, vol. 65, no. 3, pp. 225–233, 2004. View at Zentralblatt MATH
  5. G. Zet, “Applications of Lagrange spaces to physics,” in Lagrange and Finsler Geometry, vol. 76, pp. 255–262, Kluwer Academic, Dordrecht, The Netherlands, 1996. View at Zentralblatt MATH
  6. G. Zet, “Lagrangian geometrical models in physics,” Mathematical and Computer Modelling, vol. 20, no. 4-5, pp. 83–91, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. M. Anastasiei and H. Kawaguchi, “A geometrical theory of time dependent Lagrangians: I, non linear connections,” Tensor, vol. 48, pp. 273–282, 1989.
  8. M. Anastasiei and H. Kawaguchi, “A geometrical theory of time dependent Lagrangians: II, M-connections,” Tensor, vol. 48, pp. 283–293, 1989.
  9. M. Anastasiei and H. Kawaguchi, “A geometrical theory of time dependent Lagrangians: III, applications,” Tensor, vol. 49, pp. 296–304, 1990.
  10. M. Postolache, “Computational methods in Lagrange geometry,” in Lagrange and Finsler Geometry, Applications to Physics and Biology, vol. 76, pp. 163–176, Kluwer Academic, Dordrecht, The Netherlands, 1996. View at Zentralblatt MATH
  11. S. I. Vacaru, “Finsler and Lagrange geometries in Einstein and string gravity,” International Journal of Geometric Methods in Modern Physics, vol. 5, no. 4, pp. 473–511, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  12. S. Vacaru and Y. Goncharenko, “Yang-Mills fields and gauge gravity on generalized Lagrange and Finsler spaces,” International Journal of Theoretical Physics, vol. 34, no. 9, pp. 1955–1980, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. V. Nimineţ, “New geometrical properties of generalized Lagrange spaces of relativistic optics,” Tensor, vol. 68, no. 1, pp. 66–70, 2007. View at Zentralblatt MATH
  14. P. L. Antonelli and D. Hrimiuc, “A new class of spray-generating Lagrangians,” in Lagrange and Finsler Geometry, Applications to Physics and Biology, vol. 76, pp. 81–92, Kluwer Academic, Dordrecht, The Netherlands, 1996. View at Zentralblatt MATH
  15. P. L. Antonelli and D. Hrimiuc, “On the theory of φ-Lagrange manifolds with applications in biology and physics,” Nonlinear World, vol. 3, no. 3, pp. 299–333, 1996.
  16. P. L. Antonelli, R. S. Ingarden, and M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, vol. 58, Kluwer Academic, Dordrecht, The Netherlands, 1993.
  17. R. Miron and M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Applications, vol. 59, Kluwer Academic, Dordrecht, The Netherlands, 1994.
  18. L. Kozma, “Semisprays and nonlinear connections in Lagrange spaces,” Bulletin de la Société des Sciences et des Lettres de Łódź, vol. 49, pp. 27–34, 2006. View at Zentralblatt MATH
  19. M. Anastasiei, “On deflection tensor field in Lagrange geometries,” in Lagrange and Finsler Geometry, Applications to Physics and Biology, vol. 76, pp. 1–14, Kluwer Academic, Dordrecht, The Netherlands, 1996. View at Zentralblatt MATH
  20. P. L. Antonelli, Ed., Handbook of Finsler Geometry, Kluwer Academic, Dordrecht, The Netherlands, 2001.