About this Journal Submit a Manuscript Table of Contents
ISRN Geometry
Volume 2012 (2012), Article ID 685103, 27 pages
http://dx.doi.org/10.5402/2012/685103
Research Article

On Fundamental Domains for Subgroups of Isometries Acting in ℍ 𝑛

Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), 04510 Mexico, DF, Mexico

Received 19 March 2012; Accepted 2 May 2012

Academic Editors: A. Fino and E. H. Saidi

Copyright © 2012 Antonio Lascurain Orive and Rubén Molina Hernández. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. F. Beardon, The Geometry of Discrete Groups, vol. 91 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1995. View at Zentralblatt MATH
  2. D. B. A. Epstein and C. Petronio, β€œAn exposition of Poincaré's polyhedron theorem,” L'Enseignement Mathématique, Revue Internationale. IIe Série, vol. 40, no. 1-2, pp. 113–170, 1994. View at Zentralblatt MATH
  3. T. Jørgensen, A. Lascurain, and T. Pignataro, β€œTranslation extensions of the classical modular group,” Complex Variables: Theory and Application, vol. 19, no. 4, pp. 205–209, 1992.
  4. R. S. Kulkarni, β€œAn arithmetic-geometric method in the study of the subgroups of the modular group,” American Journal of Mathematics, vol. 113, no. 6, pp. 1053–1133, 1991. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH
  5. A. Lascurain Orive, β€œThe shape of the Ford domains for Γ0(N),” Conformal Geometry and Dynamics, vol. 3, pp. 1–23, 1999. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH
  6. T. A. Drumm and J. A. Poritz, β€œFord and Dirichlet domains for cyclic subgroups of PSL 2() acting on 3 and 3,” Conformal Geometry and Dynamics, vol. 3, pp. 116–150, 1999. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH
  7. J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, vol. 149 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1994.
  8. B. Maskit, Kleinian Groups, vol. 287 of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 1988.
  9. G. A. Jones and D. Singerman, Complex Functions. An Algebraic and Geometric View Point, Cambridge University Press, Cambridge, UK, 1987.
  10. J. Lehner, Discontinuous Groups and Automorphic Functions, Mathematical Surveys No. 8, American Mathematical Society, Providence, RI, USA, 1964.
  11. W. Magnus, Non Euclidean Tesselations and Their Groups, Academic Press, 1974.
  12. A. Marden, Outer Circles, Cambridge University Press, Cambridge, UK, 2007. View at Publisher Β· View at Google Scholar
  13. W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, Dover Publications, New York, NY, USA, 1976.
  14. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, vol. 11 of Publications of the Mathematical Society of Japan, Princeton University Press, Princeton, NJ, USA, 1994.
  15. M. J. Greenberg, Lectures on Algebraic Topology, W. A. Benjamin, New York, NY, USA, 1967.
  16. B. Schoeneberg, Elliptic Modular Functions. An Introduction, Springer, New York, NY, USA, 1974.
  17. C. Maclachlan and A. W. Reid, The Arithmetic of Hyperbolic 3-Manifolds, vol. 219 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 2003.
  18. B. Fine, β€œCongruence subgroups of the Picard group,” Canadian Journal of Mathematics, vol. 32, no. 6, pp. 1474–1481, 1980. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH
  19. F. González-Acuña and A. Ramírez, β€œJørgensen subgroups of the Picard group,” Osaka Journal of Mathematics, vol. 44, pp. 471–482, 2007.