About this Journal Submit a Manuscript Table of Contents
ISRN Geophysics
Volume 2012 (2012), Article ID 142872, 7 pages
http://dx.doi.org/10.5402/2012/142872
Research Article

The Effects of Marine Cloud Brightening on Seasonal Polar Temperatures and the Meridional Heat Flux

1NCAS, SEE, University of Leeds, Leeds LS2 9JT, UK
2MMM, National Center for Atmospheric Research, Boulder, CO 80307-3000, USA
3SEAS, University of Manchester, Manchester M13 9PL, UK

Received 27 January 2012; Accepted 19 February 2012

Academic Editors: S. Verma and G. Zhang

Copyright © 2012 Ben Parkes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Forster, V. Ramaswamy, P. Artaxo, et al., “IPCC synthesis report chapter 2 changes in atmospheric constituents and in radiative forcing climate change 2007: The physical science basis. contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, M. Manning, D. Qin, et al., Eds., Cambridge University Press, Cambridge, UK, 2007.
  2. J. A. Curry, W. B. Rossow, D. Randall, and J. L. Schramm, “Overview of arctic cloud and radiation characteristics,” Journal of Climate, vol. 9, no. 8, pp. 1731–1764, 1996. View at Scopus
  3. M. M. Holland and C. M. Bitz, “Polar amplification of climate change in coupled models,” Climate Dynamics, vol. 21, no. 3-4, pp. 221–232, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Jones, J. Haywood, and O. Boucher, “Climate impacts of geoengineering marinestratocumulus clouds,” Journal of Geophysical Research, vol. 114, Article ID D10106, 9 pages, 2009.
  5. P. J. Rasch, J. Latham, and C.-C. J. Chen, “Geoengineering by cloud seeding: influenceon sea ice and climate system,” Environmental Research Letters, vol. 4, Article ID 045112, 2010.
  6. G. Bala, K. Caldeira, R. Nemani, L. Cao, G. Ban-Weiss, and H. J. Shin, “Albedo enhancement of marine clouds to counteract global warming: impacts on the hydrological cycle,” Climate Dynamics, vol. 37, no. 5-6, pp. 915–931, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Jones, J. Haywood, and O. Boucher, “A comparison of the climate impacts ofgeoengineering by stratospheric so2 injection and by brightening of marine stratocumulus cloud,” Atmospheric Science Letters, vol. 291, no. 2, pp. 176–183, 2011.
  8. S. Twomey, “Pollution and the planetary albedo,” Atmospheric Environment, vol. 8, no. 12, pp. 1251–1256, 1974. View at Scopus
  9. B. A. Albrecht, “Aerosols, cloud microphysics, and fractional cloudiness,” Science, vol. 245, no. 4923, pp. 1227–1230, 1989. View at Scopus
  10. C. Wunsch, “The total meridional heat flux and its oceanic and atmospheric partition,” Journal of Climate, vol. 18, no. 21, pp. 4374–4380, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Latham, P. Rasch, C. C. Chen et al., “Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 366, no. 1882, pp. 3969–3987, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Korhonen, K. S. Carslaw, and S. Romakkaniemi, “Enhancement of marine cloud albedo via controlled sea spray injections: a global model study of the influence of emission rates, microphysics and transport,” Atmospheric Chemistry and Physics, vol. 10, no. 9, pp. 4133–4143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Latham, K. Bower, T. Choularton, et al., “Marine cloud brightening,” Philosophical Transactionsof the Royal Society A. In press.
  14. S. Salter, G. Sortino, and J. Latham, “Sea-going hardware for the cloud albedo method of reversing global warming,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 366, no. 1882, pp. 3989–4006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. G. M. Martin, M. A. Ringer, V. D. Pope, A. Jones, C. Dearden, and T. J. Hinton, “The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part 1: Model description and global climatology,” Journal of Climate, vol. 19, no. 7, pp. 1274–1301, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Davies, M. J. P. Cullen, A. J. Malcolm et al., “A new dynamical core of the Met Office's global and regional modelling of the atmosphere,” Quarterly Journal of the Royal Meteorological Society, vol. 131, no. 608, pp. 1759–1782, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J. M. Edwards and A. Slingo, “Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model,” Quarterly Journal of the Royal Meteorological Society, vol. 122, no. 531, pp. 689–719, 1996. View at Scopus
  18. T. C. Johns, C. F. Durman, H. T. Banks et al., “The new Hadley Centre Climate Model (HadGEM1): Evaluation of coupled simulations,” Journal of Climate, vol. 19, no. 7, pp. 1327–1353, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. J. S. A. Green, “Transfer properties of the large-scale eddies and the general circulation ofthe atmosphere,” Quarterly journal of the Royal Meteorological Society, vol. 96, pp. 157–185, 1970.
  20. K. E. Trenberth and J. M. Caron, “Estimates of meridional atmosphere and ocean heat transports,” Journal of Climate, vol. 14, no. 16, pp. 3433–3443, 2001. View at Scopus
  21. V. A. Alexeev, P. L. Langen, and J. R. Bates, “Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks,” Climate Dynamics, vol. 24, no. 7-8, pp. 655–666, 2005. View at Publisher · View at Google Scholar · View at Scopus