About this Journal Submit a Manuscript Table of Contents
ISRN Geophysics
Volume 2012 (2012), Article ID 270750, 10 pages
http://dx.doi.org/10.5402/2012/270750
Research Article

The Dependence of Electrical Resistivity-Saturation Relationships on Multiphase Flow Instability

Department of Environmental Engineering and Earth Science, Clemson University, Clemson, SC 29670, USA

Received 9 August 2012; Accepted 5 September 2012

Academic Editors: E. Liu and H. Perroud

Copyright © 2012 Zoulin Liu and Stephen M. J. Moysey. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Mogensen, E. H. Stenby, and D. Zhou, “Studies of waterflooding in low-permeable chalk by use of X-ray CT scanning,” Journal of Petroleum Science and Engineering, vol. 32, no. 1, pp. 1–10, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Tiab and E. C. Donaldson, Petrophysics—Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties, Gulf Professional, 2nd edition, 2004.
  3. E. Toumelin and C. Torres-Verdín, “Object-oriented approach for the pore-scale simulation of DC electrical conductivity of two-phase saturated porous media,” Geophysics, vol. 73, no. 2, pp. E67–E79, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Aggelopoulos, P. Klepetsanis, M. A. Theodoropoulou, K. Pomoni, and C. D. Tsakiroglou, “Large-scale effects on resistivity index of porous media,” Journal of Contaminant Hydrology, vol. 77, no. 4, pp. 299–323, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. T. W. J. Bauters, D. A. DiCarlo, T. S. Steenhuis, and J. Y. Parlange, “Preferential flow in water-repellent sands,” Soil Science Society of America Journal, vol. 62, no. 5, pp. 1185–1190, 1998. View at Scopus
  6. N. Weisbrod, M. R. Niemet, and J. S. Selker, “Imbibition of saline solutions into dry and prewetted porous media,” Advances in Water Resources, vol. 25, no. 7, pp. 841–855, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. N. B. Christensen, D. Sherlock, and K. Dodds, “Monitoring CO2 injection with cross-hole electrical resistivity tomography,” Exploration Geophysics, vol. 37, pp. 44–49, 2006.
  8. G. M. Homsy, “Viscous fingering in porous-media,” Annual Review of Fluid Mechanics, vol. 19, pp. 271–311, 1987. View at Scopus
  9. G. Løvoll, Y. Méheust, K. J. Måløy, E. Aker, and J. Schmittbuhl, “Competition of gravity, capillary and viscous forces during drainage in a two-dimensional porous medium, a pore scale study,” Energy, vol. 30, no. 6, pp. 861–872, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Méheust, G. Loøvoll, K. J. Måløy, and J. Schmittbuhl, “Interface scaling in a two-dimensional porous medium under combined viscous, gravity, and capillary effects,” Physical Review E, vol. 66, no. 5, Article ID 051603, 12 pages, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. J. P. Stokes, D. A. Weitz, J. P. Gollub et al., “Interfacial stability of immiscible displacement in a porous medium,” Physical Review Letters, vol. 57, no. 14, pp. 1718–1721, 1986. View at Publisher · View at Google Scholar · View at Scopus
  12. W. G. Anderson, “Wettability literature survey-part 3: the effect of wettability on the electrical properties of porous media,” Journal of Petroleum Technology, vol. 39, no. 13, pp. 1371–1378, 1986. View at Scopus
  13. S. Bekri, J. Howard, J. Muller, and P. M. Adler, “Electrical resistivity index in multiphase flow through porous media,” Transport in Porous Media, vol. 51, no. 1, pp. 41–65, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. M. J. Blunt, M. D. Jackson, M. Piri, and P. H. Valvatne, “Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow,” Advances in Water Resources, vol. 25, no. 8–12, pp. 1069–1089, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. A. K. Moss, X. D. Jing, and J. S. Archer, “Wettability of reservoir rock and fluid systems from complex resistivity measurements,” Journal of Petroleum Science and Engineering, vol. 33, no. 1–3, pp. 75–85, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Zhou, S. Arbabi, and E. H. Stenby, “A percolation study of wettability effect on the electrical properties of reservoir rocks,” Transport in Porous Media, vol. 29, no. 1, pp. 85–98, 1997. View at Scopus
  17. G. E. Archie, “The electrical resistivity log as an aid in determining some reservoir characteristics,” Petroleum Transactions of AIME, vol. 146, pp. 54–62, 1942.
  18. S. A. Sweeney and H. Y. Jennings, “Effect of wettability on the electrical resistivity of carbonate rock from a petroleum reservoir,” Journal of Physical Chemistry, vol. 64, no. 5, pp. 551–553, 1960. View at Scopus
  19. D. Abdassah, P. Permadi, Y. Sumantri, and R. Sumantri, “Saturation exponent at various wetting condition: fractal modeling of thin-sections,” Journal of Petroleum Science and Engineering, vol. 20, no. 3-4, pp. 147–154, 1998. View at Scopus
  20. J. M. Hovadik and D. K. Larue, “Static characterizations of reservoirs: refining the concepts of connectivity and continuity,” Petroleum Geoscience, vol. 13, no. 3, pp. 195–211, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Lenormand, “Liquids in porous media,” Journal of Physics, vol. 2, pp. SA79–SA88, 1990. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Yoon, M. Oostrom, and C. J. Werth, “Estimation of interfacial tension between organic liquid mixtures and water,” Environmental Science and Technology, vol. 43, no. 20, pp. 7754–7761, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. F. Villaume, “Investigations at sites contaminated with dense, non-aqueous phase liquids (NAPLs),” Ground Water Monitoring Review, vol. 5, no. 2, pp. 60–74, 1985. View at Scopus
  24. G. F. Tagg, “Practical investigations of the earth resistivity method of geophysical surveying,” Proceedings of the Physical Society, vol. 43, no. 3, pp. 305–323, 1931. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Hao, J. Waterman, T. A. Kendall, S. M. Moysey, and D. Ntarlagiannis, “Resolving IP mechanisms using micron-scale surface conductivity measurements and column SIP data,” Geochimica et Cosmochimica Acta, vol. 74, pp. A380–A380, 2010.
  26. C. J. G. Darnault, J. A. Throop, D. A. Dicarlo, A. Rimmer, T. S. Steenhuis, and J. Y. Parlange, “Visualization by light transmission of oil and water contents in transient two-phase flow fields,” Journal of Contaminant Hydrology, vol. 31, no. 3-4, pp. 337–348, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. M. R. Niemet and J. S. Selker, “A new method for quantification of liquid saturation in 2D translucent porous media systems using light transmission,” Advances in Water Resources, vol. 24, no. 6, pp. 651–666, 2001. View at Publisher · View at Google Scholar · View at Scopus