About this Journal Submit a Manuscript Table of Contents
ISRN Machine Vision
Volume 2012 (2012), Article ID 163285, 11 pages
http://dx.doi.org/10.5402/2012/163285
Research Article

Local Stereo Matching Using Adaptive Local Segmentation

Signals and Systems Group, Department of EEMCS, University of Twente, Hallenweg 15, 7522 NH Enschede, The Netherlands

Received 23 March 2012; Accepted 3 May 2012

Academic Editors: A. Bandera, E. Davies, B. K. Gunturk, S. Mattoccia, and Y. Zhuge

Copyright © 2012 Sanja Damjanović et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Marr and T. Poggio, “A computational theory of human stereo vision,” Proceedings of the Royal Society of London, vol. 204, no. 1156, pp. 301–328, 1979. View at Scopus
  2. M. Z. Brown, D. Burschka, and G. D. Hager, “Advances in computational stereo,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp. 993–1008, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. O. D. Faugeras, Three-Dimensional Computer Vision: A Geometric Viewpoint, MIT Press, 1993.
  4. D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” International Journal of Computer Vision, vol. 47, no. 1–3, pp. 7–42, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Hosni, M. Bleyer, M. Gelautz, and C. Rhemann, “Local stereo matching using geodesic support weights,” in Proceedings of the IEEE International Conference on Image Processing (ICIP '09), pp. 2093–2096, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Zhang, J. Lu, and G. Lafruit, “Cross-based local stereo matching using orthogonal integral images,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 7, pp. 1073–1079, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. P. N. Belhumeur, “A bayesian approach to binocular stereopsis,” International Journal of Computer Vision, vol. 19, no. 3, pp. 237–260, 1996. View at Scopus
  8. Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 11, pp. 1222–1239, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Sun, N. N. Zheng, and H. Y. Shum, “Stereo matching using belief propagation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 7, pp. 787–800, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Lazaros, G. C. Sirakoulis, and A. Gasteratos, “Review of stereo vision algorithms: from software to hardware,” International Journal of Optomechatronics, vol. 2, no. 4, pp. 435–462, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Lawrence Zitnick and T. Kanade, “A cooperative algorithm for stereo matching and occlusion detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 7, pp. 675–684, 2000. View at Scopus
  12. H. Hirschmüller, P. R. Innocent, and J. Garibaldi, “Real-time correlation-based stereo vision with reduced border errors,” International Journal of Computer Vision, vol. 47, no. 1–3, pp. 229–246, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Damjanović, F. van der Heijden, and L. J. Spreeuwers, “Sparse window local stereo matching,” in Proceedings of the International Conference on Computer Vision Theory and Application (VISAPP '11), pp. 689–693, March 2011. View at Scopus
  14. R. K. Gupta and S. Y. Cho, “Real-time stereo matching using adaptive binary window,” in Proceedings of the 5th International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT '10), 2010.
  15. F. Tombari, S. Mattoccia, L. D. Stefano, and E. Addimanda, “Classification and evaluation of cost aggregation methods for stereo correspondence,” in Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition (CVPR '08), pp. 1–8, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Sun, X. Mei, S. Jiao, M. Zhou, and H. Wang, “Stereo matching with reliable disparity propagation,” in Proceedings of the IEEE International Conference on 3D Digital Imaging, Modeling, Processing, Visualisation and Transmittion (3DIMPVT '11), 2011.
  17. K. Zhang, J. Lu, and G. Lafruit, “Scalable stereo matching with locally adaptive polygon approximation,” in Proceedings of the IEEE International Conference on Image Processing (ICIP '08), pp. 313–316, October 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Zhang, J. Lu, G. Lafruit, R. Lauwereins, and L. Van Gool, “Accurate and efficient stereo matching with robust piecewise voting,” in Proceedings of the IEEE International Conference on Multimedia and Expo (ICME '09), pp. 93–96, IEEE Press, Piscataway, NJ, USA, July 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Bleyer, C. Rother, and P. Kohli, “Surface stereo with soft segmentation,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '10), pp. 1570–1577, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Tao, H. S. Sawhney, and R. Kumar, “A global matching framework for stereo computation,” in Proceedings of the 8th International Conference on Computer Vision, pp. 532–539, July 2001. View at Scopus
  21. K. J. Yoon and I. S. Kweon, “Adaptive support-weight approach for correspondence search,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 650–656, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Hosni, M. Bleyer, M. Gelautz, and C. Rhemann, “Geodesic adaptive support weight approach for localstereo matching,” in Proceedings of the Computer Vision Winter Workshop, pp. 60–65, 2010.
  23. S. Birchfield and C. Tomasi, “Depth discontinuities by pixel-to-pixel stereo,” International Journal of Computer Vision, vol. 35, no. 3, pp. 269–293, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Szeliski and D. Scharstein, “Sampling the Disparity Space Image,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 3, pp. 419–425, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. Q. Wu, F. A. Merchant, and K. R. Castleman, Microscope Image Processing, Academic Press, 2008.
  26. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB, Gatesmark Publishing, 2nd edition, 2009.
  27. Middlebury stereo, March 2012, http://vision.middlebury.edu/stereo/.
  28. I. J. Cox, “Maximum likelihood N-camera stereo algorithm,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 733–739, June 1994. View at Scopus
  29. S. Damjanović, F. Van Der Heijden, and L. J. Spreeuwers, “Sparse window local stereo matching,” in Proceedings of the International Workshop on Computer Vision Applications (CVA '11), pp. 83–86, 2011.
  30. H. Hirschmüller, “Stereo processing by semiglobal matching and mutual information,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 328–341, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Bleyer, C. Rhemann, and C. Rother, “Patchmatch stereo—stereo matching with slanted support windows,” in Proceedings of the British Machine Vision Conference, 2011.