About this Journal Submit a Manuscript Table of Contents
ISRN Materials Science
Volume 2012 (2012), Article ID 763048, 6 pages
http://dx.doi.org/10.5402/2012/763048
Research Article

Red Fluorescence in Doped L a F 𝟑 : N d 𝟑 + , S m 𝟑 + Nanocrystals Synthesized by Microwave Technique

1Department of Physics, Bhavan’s College, Andheri (W), Mumbai 400058, India
2Department of Physics, Material Research Lab, Birla College, Kalyan 421304, India
3National Institute of Science and Technology, Palur Hills, Behrampur 761008, Odisha, India
4Department of Physics, K M Agarwal College, Kalyan 421301, India

Received 18 April 2012; Accepted 5 July 2012

Academic Editors: K. S. Bartwal, B. Geng, and P. Pramanik

Copyright © 2012 S. G. Gaurkhede et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Hexagonal shaped LaF3 nanocrystals (NC) doped by Nd3+ and Sm3+ ions are synthesized using microwave technique. The prepared LaF3 sample was characterized by XRD to confirm the average crystalline size of the particle is close to 20 nm (JCPDS standard card (32-0483) of pure hexagonal LaF3 crystals). The Transmission Electron Microscope (TEM) analysis which indicates the size of the primary and secondary particle is in the range between 15 nm–20 nm. Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDAX) spectrometry have been carried out. The functional groups of the synthesized nanoparticles were confirmed by Fourier transform infrared spectroscopy (FTIR). The luminescent properties of the nanoparticles have been observed by excitation and emission spectra. Energy transfer from Nd3+ to Sm3+ has been observed. The transparency of the crystals has been confirmed using UV-VIS spectra. UV-Visible absorption spectrum indicates an energy gap of 4.9 eV and shows presence of wide transparency window. Non Linear Optical (NLO) properties of the synthesized nanoparticles have been studied. It has been found that Second Harmonic Generation (SHG) efficiency of LaF3=Nd3+, Sm3+ is less than pure Potassium Dihydroxyl Phosphate (KDP) crystals.