About this Journal Submit a Manuscript Table of Contents
ISRN Materials Science
Volume 2013 (2013), Article ID 187313, 24 pages
http://dx.doi.org/10.1155/2013/187313
Review Article

Prospects for Ferroelectrics: 2012–2022

Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge CB3 0HE, UK

Received 13 September 2012; Accepted 14 October 2012

Academic Editors: V. Ji, P. K. Kahol, and M. Saitou

Copyright © 2013 J. F. Scott. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Dawber, K. M. Rabe, and J. F. Scott, “Physics of thin-film ferroelectric oxides,” Reviews of Modern Physics, vol. 77, pp. 1083–1130, 2005. View at Publisher · View at Google Scholar
  2. O. Auciello, J. F. Scott, and R. Ramesh, “The physics of ferroelectric memories,” Physics Today, vol. 51, no. 7, pp. 22–27, 1998. View at Scopus
  3. V. Garcia, M. Bibes, L. Bocher, et al., “Ferroelectric control of spin polatization,” Science, vol. 327, no. 5969, pp. 1106–1119, 2010. View at Publisher · View at Google Scholar
  4. A. Chanthbouala, A. Crassous, V. Garcia, et al., “Solid-state memories based on ferroelectric tunnel junctions,” Nature Nanotechnology, vol. 7, pp. 101–104, 2012.
  5. A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, “Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3,” Science, vol. 311, no. 5765, pp. 1270–1271, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. S. Mischenko, Q. Zhang, R. W. Whatmore, J. F. Scott, and N. D. Mathur, “Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9 Pb Mg1/3Nb2/3O3-0.1 PbTiO3 near room temperature,” Applied Physics Letters, vol. 89, no. 24, Article ID 242912, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Takahashi, N. Kida, and M. Tonouchi, “Terahertz radiation by an ultrafast spontaneous polarization modulation of multiferroic BiFeO3 thin films,” Physical Review Letters, vol. 96, no. 11, Article ID 117402, pp. 1–4, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J. F. Scott, H. J. Fan, S. Kawasaki et al., “Terahertz emission from tubular Pb(Zr, Ti)O3 nanostructures,” Nano Letters, vol. 8, no. 12, pp. 4404–4409, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. D. S. Jeong, R. Thomas, R. S. Katiyar et al., “Emerging memories: resistive switching mechanisms and current status,” Reports on Progress in Physics, vol. 75, no. 7, Article ID 076502, 2012.
  10. R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nature Materials, vol. 6, no. 11, pp. 833–840, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Seidel, W. Luo, S. J. Suresha, et al., “Prominent electrochromism through vacancy-order melting in a complex oxide,” Nature Communications, vol. 3, article 799, 2012.
  12. A. Gruverman, D. Wu, H. J. Fan, and J. F. Scott, “Vortex ferroelectric domains,” Journal of Physics Condensed Matter, vol. 20, no. 34, Article ID 342201, 2008.
  13. G. Catalan, J. Seidel, J. F. Scott, and R. Ramesh, “Domain wall nanoelectronics,” Reviews of Modern Physics, vol. 84, pp. 119–156, 2012. View at Publisher · View at Google Scholar
  14. A. V. Bune, V. M. Fridkin, S. Ducharme et al., “Two-dimensional ferroelectric films,” Nature, vol. 391, no. 6670, pp. 874–877, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Furukawa, “Ferroelectric properties of vinylidene fluoride copolymers,” Phase Transitions, vol. 18, pp. 143–211, 1989.
  16. D. Daranciang, M. Highland, H. Wen, et al., “Ultrafast photovoltaic response in ferroelectric nanolayers,” Physical Review Letters, vol. 108, no. 8, Article ID 087601, 8 pages, 2012.
  17. R. M. Swanson, “Photovoltaics power up,” Science, vol. 324, no. 5929, pp. 891–892, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. F. Scott and C. A. Paz De Araujo, “Ferroelectric memories,” Science, vol. 246, no. 4936, pp. 1400–1405, 1989. View at Scopus
  19. E. Tokumitsu, R. I. Nakamura, and H. Ishiwara, “Nonvolatile memory operations of metal-ferroelectric-insulator-semiconductor (MFIS) FET's using PLZT/STO/Si(100) structures,” IEEE Electron Device Letters, vol. 18, no. 4, pp. 160–162, 1997. View at Scopus
  20. R. Scherwitzl, P. Zubko, I. G. Lezama et al., “Electric-field control of the metal-insulator transition in ultrathin NdNiO3 films,” Advanced Materials, vol. 22, no. 48, pp. 5517–5520, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Girardot, S. Pignard, F. Weiss, and J. Kreisel, “SmNiO3/NdNiO3 thin film multilayers,” Applied Physics Letters, vol. 98, Article ID 241903, 2011.
  22. M. Lines and A. M. Glass, Theory and Application of Ferroelectrics and Related Materials, Clarendon Press, Oxford, UK, 1979.
  23. M. Fiebig, “Revival of the magnetoelectric effect,” Journal of Physics D, vol. 38, no. 8, pp. R123–R152, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. G. A. Smolensky, V. A. Isupov, and A. I. Agranovskaya, “A new group of ferroelectrics (with layered structure),” Soviet Physics Solid State, vol. 1, no. 1, pp. 149–150, 1959.
  25. G. A. Smolensky, V. A. Isupov, and A. I. Agranovskaya, “Ferroelectrics of the oxygen-octahedral type with layered structure,” Soviet Physics Solid State, vol. 3, no. 3, pp. 651–655, 1961.
  26. G. A. Smolensky, V. A. Isupov, and A. I. Agranovskaya, “New Ferroelectrics of a complex composition: 4,” Soviet Physics Solid State, vol. 2, no. 11, pp. 2651–2654, 1961.
  27. T. Kimura, Y. Sekio, H. Nakamura, T. Siegrist, and A. P. Ramirez, “Cupric oxide as an induced-multiferroic with high-TC,” Nature Materials, vol. 7, no. 4, pp. 291–294, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Kimura, “A room-temperature multiferroic,” Nature conference, Aachen, Germany, June 2012.
  29. W. Peng, N. Lemee, M. Karkut et al., “Spin-lattice coupling in multiferroic Pb (Fe1/2Nb1/2)O3 thin films,” Applied Physics Letters, vol. 94, no. 1, Article ID 012509, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Martinez, R. Palai, H. Huhtinen, J. Liu, J. F. Scott, and R. S. Katiyar, “Nanoscale ordering and multiferroic behavior in Pb (Fe1/2Ta1/2)O3,” Physical Review B, vol. 82, no. 13, Article ID 134104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Sanchez, N. Ortega, A. Kumar, R. S. Katiyar, and J. F. Scott, “Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: lead iron tantalate—lead zirconate titanate (PFT/PZT),” AIP Advances, vol. 1, Article ID 042169, 2011.
  32. D. N. Evans, J. N. Gregg, A. Kumar, D. Sanchez, R. S. Katiyar, and J. F. Scott, “Magnetoelectric switching at room temperature in a new multiferroic,” Nature Communications. In press.
  33. R. Pirc, R. Blinc, and J. F. Scott, “Mesoscopic model of a system possessing both relaxor ferroelectric and relaxor ferromagnetic properties,” Physical Review B, vol. 79, no. 21, Article ID 214114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Kumar, G. L. Sharma, R. S. Katiyar, R. Pirc, R. Blinc, and J. F. Scott, “Magnetic control of large room-temperature polarization,” Journal of Physics Condensed Matter, vol. 21, no. 38, Article ID 382204, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. D. N. Astrov, “The magnetoelectric effect in antiferromagnets,” Soviet Physics JETP, vol. 11, pp. 708–709, 1960.
  36. D. N. Astrov, “Magnetoelectric effect in chromium oxide,” Soviet Physics JETP, vol. 13, pp. 729–733, 1961.
  37. B. I. Alshin, D. N. Astrov, and A. V. Tischen, “Magnetoelectric effect in BaCoF4,” JETP Letters, vol. 12, pp. 142–145, 1970.
  38. D. N. Astrov, B. I. Alshin, R. V. Zorin, and L. A. Drobyshe, “Spontaneous magnetoelectric effect,” Soviet Physics JETP, vol. 28, pp. 1123–1127, 1969.
  39. R. V. Zorin, A. V. Tischen, and D. N. Astrov, “2-dimensional magnetic ordering in BaMnF4,” Fizika Tverdovo Tela, vol. 14, pp. 3103–3107, 1972.
  40. B. I. Alshin, D. N. Astrov, and R. V. Zorin, “Low-frequency magnetoelectric resonances in BaMnF4,” Zhurnal Eksperimenti Teoretische Fizik, vol. 63, pp. 2198–2204, 1972.
  41. R. V. Zorin, D. N. Astrov, and B. I. Alshin, “Low-frequency magnetoelectric resonances in BaCoF4,” Zhurnal Eksperimenti Teoretische Fizik, vol. 62, pp. 1201–1120, 1972.
  42. D. R. Tilley and J. F. Scott, “Frequency dependence of magnetoelectric phenomena in BaMnf4,” Physical Review B, vol. 25, no. 5, pp. 3251–3260, 1982. View at Publisher · View at Google Scholar · View at Scopus
  43. E. T. Keve, S. C. Abrahams, and J. L. Bernstein, “Crystal Structure of pyroelectric paramagnetic barium cobalt fluoride, BaCoF4,” Journal of Chemical Physics, vol. 53, pp. 3279–3283, 1970.
  44. C. Ederer and N. A. Spaldin, “Recent progress in first-principles studies of magnetoelectric multiferroics,” Current Opinion in Solid State and Materials Science, vol. 9, no. 3, pp. 128–139, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Ederer and N. A. Spaldin, “Electric-field-switchable magnets: the case of BaNiF4,” Physical Review B, vol. 74, no. 2, Article ID 020401, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. E. L. Venturini and F. R. Morgenthaler, “AFMR versus orientation in weakly ferromagnetic BaMnF4,” AIP Conference Proceedings, vol. 24, pp. 168–169, 1975. View at Publisher · View at Google Scholar
  47. S. A. Kizhaev, Ioffe Institute, private communication, 1981.
  48. S. A. Kizhaev and R. V. Pisarev, “Dielectric and magnetic properties of BaMnF4 at low temperatures,” Fizika Tverdogo Tela, vol. 26, pp. 1669–1674, 1984.
  49. L. A. Prozorova, Kapitza Institute, private communication, 1981.
  50. A. K. Zvezdin and A. P. Pyatakov, “Symmetry and magnetoelectric interactions in BaMnF4,” Low Temperature Physics, vol. 36, no. 6, Article ID 006006LTP, pp. 532–537, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. R. R. Birss, “Magnetic symmetry and forbidden effects,” Americam Journal of Physics, vol. 32, no. 2, Article ID 142150, 1964.
  52. J. F. Scott, “Phase transitions in BaMnF4,” Reports on Progress in Physics, vol. 42, no. 6, pp. 1055–1084, 1979. View at Publisher · View at Google Scholar · View at Scopus
  53. D. L. Fox, D. R. Tilley, J. F. Scott, and H. J. Guggenheim, “Magnetoelectric phenomena in BaMnF4 and BaMn0.99Co0.01F4,” Physical Review B, vol. 21, no. 7, pp. 2926–2936, 1980. View at Publisher · View at Google Scholar · View at Scopus
  54. D. L. Fox and J. F. Scott, “Ferroelectrically induced ferromagnetism,” Journal of Physics C, vol. 10, no. 11, pp. L329–L331, 1977. View at Publisher · View at Google Scholar · View at Scopus
  55. J. F. Scott, “Mechanisms of dielectric anomalies in BaMnF4,” Physical Review B, vol. 16, no. 5, pp. 2329–2331, 1977. View at Publisher · View at Google Scholar · View at Scopus
  56. G. A. Samara and J. F. Scott, “Dielectric anomalies in BaMnF4 at low temperatures,” Solid State Communications, vol. 21, no. 2, pp. 167–170, 1977. View at Scopus
  57. O. Bonfim and G. Gehring, “Magnetoelectric effect in crystals,” Advances in Physics, vol. 29, pp. 731–769, 1980. View at Publisher · View at Google Scholar
  58. G. Catalan, “Magnetocapacitance without magnetoelectric coupling,” Applied Physics Letters, vol. 88, Article ID 102902, 2006.
  59. J. F. Scott, “Electrical characterization of magnetoelectrical materials,” Journal of Materials Research, vol. 22, no. 8, pp. 2053–2062, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. G. Catalan and J. F. Scott, “Magnetoelectrics: is CdCr2S4 a multiferroic relaxor?” Nature, vol. 448, no. 7156, pp. E4–E5, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. D. Staresinić, P. Lunkenheimer, J. Hemberger, K. Biljaković, and A. Loidl, “Giant dielectric response in the one-dimensional charge-ordered semiconductor (NbSe4)3I,” Physical Review Letters, vol. 96, no. 4, Article ID 046402, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. P. Lunkenheimer, R. Fichtl, J. Hemberger, V. Tsurkan, and A. Loidl, “Relaxation dynamics and colossal magnetocapacitive effect in CdCr2S4,” Physical Review B, vol. 72, no. 6, Article ID 060103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Hemberger, P. Lunkenheimer, R. Fichtl, H. A. Krug Von Nidda, V. Tsurkan, and A. Loidl, “Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4,” Nature, vol. 434, no. 7031, pp. 364–367, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Krohns, F. Schrettle, P. Lunkenheimer, V. Tsurkan, and A. Loidl, “Colossal magnetocapacitive effect in differently synthesized and doped CdCr2S4,” Physica B, vol. 403, no. 23-24, pp. 4224–4227, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Hemberger, P. Lunkenheimer, R. Fichtl, H. A. K. Von Nidda, V. Tsurkan, and A. Loidl, “Magnetoelectrics: is CdCr2S4 a multiferroic relaxor? (Reply),” Nature, vol. 448, no. 7156, pp. E5–E6, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Weber, P. Lunkenheimer, R. Fichtl, J. Hemberger, V. Tsurkan, and A. Loidl, “Colossal magnetocapacitance and colossal magnetoresistance in HgCr2S4,” Physical Review Letters, vol. 96, no. 15, Article ID 157202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Kliem and B. Martin, “Pseudo-ferroelectric properties by space charge polarization,” Journal of Physics Condensed Matter, vol. 20, no. 32, Article ID 321001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. N. Ortega, A. Kumar, R. S. Katiyar, and J. F. Scott, “Maxwell-Wagner space charge effects on the Pb(Zr,Ti)O3—CoFe2O4 multilayers,” Applied Physics Letters, vol. 91, no. 10, Article ID 102902, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. E. L. Albuquerque and D. R. Tilley, “Mode mixing and dielectric function,” Solid State Communications, vol. 26, no. 11, pp. 817–821, 1978. View at Scopus
  70. A. M. Glass, M. E. Lines, M. Eibschutz, F. S. L. Hsu, and H. J. Guggenheim, “Observation of anomalous pyroelectric behavior in BaNiF4 due to cooperative magnetic singularity,” Communications on Physics, vol. 2, no. 4, pp. 103–107, 1977. View at Scopus
  71. T. J. Negran, “Measurement of the thermal diffusivity in BaMnF4 by means of its intrinsic pyroelectric response,” Ferroelectrics, vol. 34, pp. 285–289, 1981.
  72. S. L. Hou and N. Bloembergen, “Paramagnetoelectric effects in NiSO4·6H2O,” Physical Review, vol. 138, pp. A1218–A1226, 1965.
  73. P. Sciau, M. Clin, J. P. Rivera, and H. Schmid, “Magnetoelectric measurements on BaMnF4,” Ferroelectrics, vol. 105, pp. 201–206, 1990. View at Publisher · View at Google Scholar
  74. A. K. Zvezdin, G. P. Vorob'ev, and A. M. Kadomsteva, “Quadratic magnetoelectric effect and the role of the magnetocaloric effect in the magnetoelectric properties of multiferroic BaMnF4,” Journal of Experimental and Theoretical Physics, vol. 109, pp. 221–226, 2009. View at Publisher · View at Google Scholar
  75. J. M. Perez-Mato, Summer School on Multiferroics, Girona, Spain, 2008.
  76. N. A. Benedek and C. J. Fennie, “Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling,” Physical Review Letters, vol. 106, no. 10, Article ID 107204, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. E. T. Keve, S. C. Abrahams, and J. L. Bernstein, “Crystal structure of pyroelectric paramagnetic barium manganese fluoride, BaMnF4,” The Journal of Chemical Physics, vol. 51, no. 11, Article ID 4928, 9 pages, 1969. View at Scopus
  78. C. Ederer and C. J. Fennie, “Electric-field switchable magnetization via the Dzyaloshinskii-Moriya interaction: FeTiO3 versus BiFeO3,” Journal of Physics Condensed Matter, vol. 20, no. 43, Article ID 434219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. C. Ederer and N. A. Spaldin, “Origin of ferroelectricity in the multiferroic barium fluorides BaMF4: a first principles study,” Physical Review B, vol. 74, Article ID 024102, 2006.
  80. J. F. Scott, “Phase transitions in BaMnF4,” Reports on Progress in Physics, vol. 42, no. 6, Article ID 1055, 1979. View at Publisher · View at Google Scholar · View at Scopus
  81. D. E. Cox, S. M. Shapiro, R. J. Nelmes et al., “X-ray- and neutron-diffraction measurements on BaMnF4,” Physical Review B, vol. 28, no. 3, pp. 1640–1643, 1983. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Levstik, R. Blinc, P. Kadaba, S. Cizikov, I. Levstik, and C. Filipic, “Multiple phase transitions in BaMnF4,” Ferroelectrics, vol. 4, pp. 703–707, 1976.
  83. M. Hidaka, T. Nakayama, J. F. Scott, and J. S. Storey, “Piezoelectric resonance study of structural anomalies in BaMnF4,” Physica B+C, vol. 133, no. 1, pp. 1–9, 1985. View at Scopus
  84. J. F. Scott, F. Habbal, and M. Hidaka, “Phase transitions in BaMnF4: specific heat,” Physical Review B, vol. 25, no. 3, pp. 1805–1812, 1982. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Barthes-Regis, R. Almairac, P. St-Gregoire et al., “Temperature dependence of the wave vector of the incommensurate modulstion in two BaMnF4 crystals—neutron and X-ray measurements,” Journal de Physique Lettres, vol. 44, no. 19, pp. 829–835, 1983. View at Scopus
  86. P. St. Gregoire, M. Barthes, R. Almairac et al., “On the incommensurate phase in BaMnF4,” Ferroelectrics, vol. 53, pp. 307–310, 1984. View at Publisher · View at Google Scholar
  87. B. B. Lavrencic and J. F. Scott, “Dynamical model for the polar-incommensurate transition in BaMnF4,” Physical Review B, vol. 24, no. 5, pp. 2711–2717, 1981. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Levstik, V. Bobnar, C. Filipič et al., “Magnetoelectric relaxor,” Applied Physics Letters, vol. 91, no. 1, Article ID 012905, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. A. Levstik, C. Filipič, V. Bobnar et al., “0.3Pb(Fe1/2Nb1/2)O3-0.7Pb (Mg1/2W1/2)O3: a magnetic and electric relaxor,” Journal of Applied Physics, vol. 104, no. 5, Article ID 054113, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. G. Nénert and T. T. M. Palstra, “Prediction for new magnetoelectric fluorides,” Journal of Physics Condensed Matter, vol. 19, no. 40, Article ID 406213, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. R. Blinc, G. Tavčar, B. Zemva, and J. F. Scott, “Electron paramagnetic resonance and Mossbauer study of antiferromagnetic K3Cu3Fe2F15,” Journal of Applied Physics, vol. 106, Article ID 023924, 2009.
  92. R. Blinc, G. Tavčar, B. Žemva et al., “Weak ferromagnetism and ferroelectricity in K3Fe5F15,” Journal of Applied Physics, vol. 103, Article ID 074114, 2008.
  93. R. Blinc, B. Zalar, P. Cevc et al., “39K NMR and EPR study of multiferroic K3Fe5F15,” Journal of Physics Condensed Matter, vol. 21, no. 4, Article ID 045902, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. A. Levstik, C. Filipic, and V. Bobnar, “Polarons in magnetoelectric (K3Fe3Cr2F15),” Journal of Apploed Physics, vol. 106, Article ID 073720, 2009.
  95. R. Blinc, B. Zalar, P. Cevc et al., “39K NMR and EPR study of multiferroic K3Fe5F15,” Journal of Physics Condensed Matter, vol. 21, no. 4, Article ID 045902, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. S. C. Abrahams, “Systematic prediction of new inorganic ferroelectrics in point group 4,” Acta Crystallographica Section B, vol. 55, no. 4, pp. 494–506, 1999. View at Scopus
  97. S. C. Abrahams, “Structurally based predictions of ferroelectricity in 7 inorganic materials with space group Pba2 and two experimental confirmations,” Acta Crystallographica B, vol. 45, pp. 228–232, 1989.
  98. K. Yamauchi and S. Picozzi, “Interplay between charge order, ferroelectricity, and ferroelasticity: tungsten bronze structures as a playground for multiferroicity,” Physical Review Letters, vol. 105, no. 10, Article ID 107202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. N. Yedukondalu, K. R. Babu, C. Bheemalingam, D. J. Singh, G. Vaitheeswaran, and V. Kanchana, “Electronic structure, optical properties, and bonding in alkaline-earth halofluoride scintillators: BaClF, BaBrF, and BaIF,” Physical Review B, vol. 83, no. 16, Article ID 165117, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. J. F. Scott, “Raman spectra of BaClF, BaBrF, and SrClF,” The Journal of Chemical Physics, vol. 49, no. 6, pp. 2766–2769, 1968. View at Scopus
  101. A. Kumar, R. S. Katiyar, R. N. Premnath, C. Rinaldi, and J. F. Scott, “Strain-induced artificial multiferroicity in Pb(Zr0.53Ti0.47)O3/Pb(Fe0.66W0.33)O3 layered nanostructure at ambient temperature,” Journal of Materials Science, vol. 44, no. 19, pp. 5113–5119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Kumar, N. M. Murari, and R. S. Katiyar, “Investigation of dielectric and electrical behavior in Pb(Fe0.66W0.33)0.50Ti0.50O3 thin films by impedance spectroscopy,” Journal of Alloys and Compounds, vol. 469, no. 1-2, pp. 433–440, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. W. Peng, N. Lemee, J. L. Dellis et al., “Epitaxial growth and magnetoelectric relaxor behavior in multiferroic 0.8Pb (Fe1/2Nb1/2)O3-0.2Pb (Mg1/2W1/2)O3 thin films,” Applied Physics Letters, vol. 95, no. 13, Article ID 132507, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. J. F. Scott, R. Palai, A. Kumar et al., “New phase transitions in perovskite oxides: BiFeO3, SrSnO3, and Pb(Fe2/3W1/3)1/2Ti1/2O3,” Journal of the American Ceramic Society, vol. 91, no. 6, pp. 1762–1768, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. A. Kumar, I. Rivera, R. S. Katiyar, and J. F. Scott, “Multiferroic Pb (Fe0.66W0.33)0.80Ti0.20O3 thin films: a room-temperature relaxor ferroelectric and weak ferromagnetic,” Applied Physics Letters, vol. 92, no. 13, Article ID 132913, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. R. N. P. Choudhary, D. K. Pradhan, C. M. Tirado, G. E. Bonilla, and R. S. Katiyar, “Effect of la substitution on structural and electrical properties of Ba(Fe2/3W1/3)O3 nanoceramics,” Journal of Materials Science, vol. 42, no. 17, pp. 7423–7432, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. A. Kumar, N. M. Murari, R. S. Katiyar, and J. F. Scott, “Probing the ferroelectric phase transition through Raman spectroscopy in Pb (Fe2/3W1/3)1/2Ti1/2O3 thin films,” Applied Physics Letters, vol. 90, no. 26, Article ID 262907, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. R. N. P. Choudhary, D. K. Pradhan, C. M. Tirado, G. E. Bonilla, and R. S. Katiyar, “Impedance characteristics of Pb(Fe2/3W1/3)O3-BiFeO3 composites,” Physica Status Solidi, vol. 244, no. 6, pp. 2354–2366, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. A. Kumar, N. M. Murari, and R. S. Katiyar, “Diffused phase transition and relaxor behavior in Pb(Fe2/3W1/3)O3 thin films,” Applied Physics Letters, vol. 90, no. 16, Article ID 162903, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. R. N. P. Choudhury, C. Rodríguez, P. Bhattacharya, R. S. Katiyar, and C. Rinaldi, “Low-frequency dielectric dispersion and magnetic properties of La, Gd modified Pb(Fe1/2Ta1/2)O3 multiferroics,” Journal of Magnetism and Magnetic Materials, vol. 313, no. 2, pp. 253–260, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. W. Peng, N. Lemée, J. Holc, M. Kosec, R. Blinc, and M. G. Karkut, “Epitaxial growth and structural characterization of Pb(Fe1/2Nb1/2)O3 thin films,” Journal of Magnetism and Magnetic Materials, vol. 321, no. 11, pp. 1754–1757, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. W. Peng, N. Lemee, and M. Karkut, “Spin-lattice coupling in multiferroic thin films,” Applied Physics Leters, vol. 94, Article ID 012509, 2009.
  113. A. Kumar, R. S. Katiyar, C. Rinaldi, S. G. Lushnikov, and T. A. Shaplygina, “Glasslike state in PbFe1/2Nb1/2O3 single crystal,” Applied Physics Letters, vol. 93, no. 23, Article ID 232902, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Correa, A. Kumar, and R. S. Katiyar, “Observation of magnetoelectric coupling in glassy epitaxial Pb(Fe1/2Nb1/2)O3 thin films,” Applied Physics Leters, vol. 93, Article ID 192907, 2008.
  115. D. Varshney, R. N. P. Choudhary, C. Rinaldi, and R. S. Katiyar, “Dielectric dispersion and magnetic properties of Ba-modified Pb(Fe 1/2Nb1/2)O3,” Applied Physics A, vol. 89, no. 3, pp. 793–798, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. D. Varshney, R. N. P. Choudhary, and R. S. Katiyar, “Low frequency dielectric response of mechanosynthesized (Pb0.9Ba0.1) (Fe0.50Nb0.50)O3 nanoceramics,” Applied Physics Letters, vol. 89, no. 17, Article ID 172901, 2006. View at Publisher · View at Google Scholar · View at Scopus
  117. K. H. Fischer and J. A. Hertz, Spin Glasses, Cambridge University Press, Cambridge, UK, 1991.
  118. M. K. Singh, W. Prellier, M. P. Singh, R. S. Katiyar, and J. F. Scott, “Spin-glass transition in single-crystal BiFeO3,” Physical Review B, vol. 77, no. 14, Article ID 144403, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. M. M. Parish and P. B. Littlewood, “Magnetocapacitance in nonmagnetic composite media,” Physical Review Letters, vol. 101, no. 16, Article ID 166602, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. M. K. Singh, R. S. Katiyar, W. Prellier, and J. F. Scott, “The Almeida-Thouless line in BiFeO3: is bismuth ferrite a mean field spin glass?” Journal of Physics Condensed Matter, vol. 21, no. 4, Article ID 042202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. I. E. Dzyaloshinskii, “Magnetoelectric to multiferroic phase transitions,” Europhysics Letters, vol. 96, no. 1, Article ID 17001, 2011. View at Publisher · View at Google Scholar
  122. R. Pirc, R. Blinc, and J. F. Scott, “Mesoscopic model of a system possessing both relaxor ferroelectric and relaxor ferromagnetic properties,” Physical Review B, vol. 79, no. 21, Article ID 214114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. A. Kumar, G. L. Sharma, R. S. Katiyar, and J. F. Scott, “Magnetic control of large roomtemperature polarization,” Journal of Physics Condensed Matter, vol. 21, Article ID 382204, 2009.
  124. M. Kempa, S. Kamba, M. Savinov et al., “Bulk dielectric and magnetic properties of PFW-PZT ceramics: absence of magnetically switched-off polarization,” Journal of Physics Condensed Matter, vol. 22, no. 44, Article ID 4453002, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. D. Lee, Y. A. Park, S. M. Yang et al., “Suppressed magnetoelectric effect in epitaxially grown multiferroic Pb(Zr0.57Tix0.57)O3-Pb(Fe2/3W1/3)O3 solid-solution thin films,” Journal of Physics D, vol. 43, no. 45, Article ID 455403, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. K. S. A. Butcher, T. L. Tansley, and D. Alexiev, “An instrumental solution to the phenomenon of negative capacitances in semiconductors,” Solid-State Electronics, vol. 39, no. 3, pp. 333–336, 1996. View at Publisher · View at Google Scholar · View at Scopus
  127. P. Zubko, University of Geneva, Private Communication.
  128. M. Ershov, H. C. Liu, L. Li, M. Buchanan, Z. R. Wasilewski, and A. K. Jonscher, “Negative capacitance effect in semiconductor devices,” IEEE Transactions on Electron Devices, vol. 45, no. 10, pp. 2196–2206, 1998. View at Scopus
  129. R. Martínez, A. Kumar, R. Palai, J. F. Scott, and R. S. Katiyar, “Impedance spectroscopy analysis of Ba0.7Sr0.3TiO3/La0.7Sr0.3MnO3 heterostructure,” Journal of Physics D, vol. 44, no. 10, Article ID 105302, 2011. View at Publisher · View at Google Scholar · View at Scopus
  130. A. Kumar, R. S. Katiyar, and J. F. Scott, “Positive temperature coefficient of resistivity and negative differential resistivity in lead iron tungstate-lead zirconate titanate,” Applied Physics Letters, vol. 94, Article ID 212903, 2009.
  131. M. Dawber and J. F. Scott, “Negative differential resistivity and positive temperature coefficient of resistivity effect in the diffusion-limited current of ferroelectric thin-film capacitors,” Journal of Physics Condensed Matter, vol. 16, no. 49, pp. L515–L521, 2004. View at Publisher · View at Google Scholar · View at Scopus
  132. A. Levstik, C. Filipič, and J. Holc, “The magnetoelectric coefficients of Pb (Fe1/2Nb1/2)O3 and 0.8Pb (Fe1/2Nb1/2)O3 -0.2Pb (Mg1/2W1/2) O3,” Journal of Applied Physics, vol. 103, no. 6, Article ID 066106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  133. J. Ravez, “The inorganic fluoride and oxyfluoride ferroelectrics,” Journal de Physique III, vol. 7, no. 6, pp. 1129–1144, 1997. View at Scopus
  134. S. C. Abrahams, J. Albertsson, and C. Svensson, “Structure of Pb5Cr3F19 at 295K,” Acta Crystallographica B, vol. 46, pp. 497–502, 1990.
  135. S. Sarraute, J. Ravez, R. Von Der Mühll, G. Bravic, R. S. Feigelson, and S. C. Abrahams, “Structure of ferroelectric Pb5Al3F19 at 160 K, polarization Reversal and Relationship to Ferroelectric Pb5Cr3F19 at 295 K,” Acta Crystallographica Section B, vol. 52, no. 1, pp. 72–77, 1996. View at Scopus
  136. E. Kroumova, M. I. Aroyo, J. M. Perrez-Mato, and M. R. Hundt, “Ferroelectric-paraelectric phase transitions with no group-supergroup relation between the space groups of both phases?” Acta Crystallographica B, vol. 57, pp. 599–601, 2001. View at Publisher · View at Google Scholar
  137. M. Lorient, R. VonderMuhll, J. Ravez, and A. Tressaud, “Etude de la transition de phase de (NH4) 3FeF6 par mesures dielectriques et de thermocourant,” Solid State Communications, vol. 36, no. 5, pp. 383–385, 1980. View at Publisher · View at Google Scholar
  138. M. Lorient, R. Von der Mühll, A. Tressaud, and J. Ravez, “Polarisation remanente dans les varietes de basse temperature de (NH4)3AlF6 ET (NH4)3FeF6,” Solid State Communications, vol. 40, no. 9, pp. 847–852, 1981. View at Scopus
  139. R. . Blinc, P. Cevc, G. Tavcar, Z. Trontelj, V. V. Laguta, and J. F. Scott, “Magnetism in Pb5Cr3F19,” Physical Review B, vol. 85, Article ID 054419, 2012.
  140. C. T. Nelson, P. Gao, J. R. Jokisaari, et al., “Domain dynamics during ferroelectric switching,” Science, vol. 334, no. 6058, pp. 968–971, 2011. View at Publisher · View at Google Scholar
  141. C. L. Jia, K. W. Urban, M. Alexe, D. Hesse, and I. Vrejoiu, “Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr, Ti)O3,” Science, vol. 331, no. 6023, pp. 1420–1423, 2011. View at Publisher · View at Google Scholar · View at Scopus
  142. A. Fousková, “Increase in permittivity of ferroelectrics as a consequence of polarization reversal,” Journal of the Physical Society of Japan, vol. 20, no. 9, pp. 1625–1628, 1965. View at Scopus
  143. A. Fouskova and V. Janousek, “Permittivity of rochelle salt during switching,” Czechoslovak Journal of Physics, vol. 12, no. 5, pp. 413–416, 1962. View at Publisher · View at Google Scholar
  144. J. Seidel, L. W. Martin, Q. He et al., “Conduction at domain walls in oxide multiferroics,” Nature Materials, vol. 8, no. 3, pp. 229–234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. A. Aird and E. K. H. Salje, “Sheet superconductivity in twin walls: experimental evidence of WO3-x,” Journal of Physics Condensed Matter, vol. 10, no. 22, pp. L377–L380, 1998. View at Publisher · View at Google Scholar · View at Scopus
  146. J. Guyonnet, I. Gaponenko, S. Gariglio, and P. Paruch, “Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films,” Advanced Materials, vol. 23, no. 45, pp. 5377–5382, 2011.
  147. S. Farokhipoor and B. Noheda, “Conduction through 71 degrees domain walls in BiFeO3 thin films,” Physical Review Letters, vol. 107, no. 12, Article ID 127601, 2011.
  148. J. Privratska and V. Janovec, “Pyromagnetic domain walls connecting antiferromagnetic non-ferroelastic magnetoelectric domains,” in Proceedings of the 3rd International Conference on Magnetoelectric Interaction Phenomena in Crystals (MEIPIC '96), Novgorod, Russia, September 1996.
  149. J. Privratska and V. Janovec, “Pyromagnetic domain walls connecting antiferromagnetic non-ferroelastic magnetoelectric domains,” Ferroelectrics, vol. 204, no. 1–4, pp. 321–331, 1997. View at Publisher · View at Google Scholar
  150. M. Daraktchiev, G. Catalan, and J. F. Scott, “Landau theory of ferroelectric domain walls in magnetoelectrics,” Ferroelectrics, vol. 375, no. 1, pp. 122–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  151. M. Daraktchiev, G. Catalan, and J. F. Scott, “Landau theory of domain wall magnetoelectricity,” Physical Review B, vol. 81, no. 22, Article ID 224118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. M. Molotskii, Y. Rosenwaks, and G. Rosenman, “Ferroelectric domain breakdown,” Annual Review of Materials Research, vol. 37, pp. 271–296, 2007. View at Publisher · View at Google Scholar · View at Scopus
  153. A. Agronin, M. Molotskii, Y. Rosenwaks et al., “Dynamics of ferroelectric domain growth in the field of atomic force microscope,” Journal of Applied Physics, vol. 99, no. 10, Article ID 104102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  154. I. I. Naumov, L. Bellaiche, and H. Fu, “Unusual phase transitions in ferroelectric nanodisks and nanorods,” Nature, vol. 432, no. 7018, pp. 737–740, 2004. View at Publisher · View at Google Scholar · View at Scopus
  155. I. I. Naumov and H. X. Fu, “Vortex-to-polarization phase transformation path in lead zirconate-titanate nanoparticles,” Physical Review Letters, vol. 98, Article ID 077603, 2007.
  156. V. L. Ginzburg, A. A. Gorbatsevich, and Y. V. Kopaev, “On the problem of super diamagnetism,” Solid State Communications, vol. 50, pp. 339–343, 1984.
  157. A. A. Gorbatsevich and Y. V. Kopaev, “Toroidal order in ferroelectric crystals,” Ferroelectrics, vol. 161, pp. 321–330, 1994.
  158. B. B. Van Aken, J. P. Rivera, H. Schmid, and M. Fiebig, “Observation of ferrotoroidic domains,” Nature, vol. 449, no. 7163, pp. 702–705, 2007. View at Publisher · View at Google Scholar · View at Scopus
  159. P. Paruch, T. Giamarchi, T. Tybell, and J. M. Triscone, “Nanoscale studies of domain wall motion in epitaxial ferroelectric thin films,” Journal of Applied Physics, vol. 100, no. 5, Article ID 051608, 2006. View at Publisher · View at Google Scholar · View at Scopus
  160. R. McQuaig, Atomic force microscopy of ferroelectric domains [Ph.D. thesis], Queens University Belfast, 2012.
  161. D. J. Srolovitz and J. F. Scott, “Clock-model description of incommensurate ferroelectric films and of nematic-liquid-crystal films,” Physical Review B, vol. 34, no. 3, pp. 1815–1819, 1986. View at Publisher · View at Google Scholar · View at Scopus
  162. S. Komineas, “Scattering of magnetic solitons in two dimensions,” Physica D, vol. 155, no. 3-4, pp. 223–234, 2001. View at Publisher · View at Google Scholar · View at Scopus
  163. F. De Guerville, M. E. Marssi, I. Lukyanchuk, and L. Lahoche, “Ferroelectric domains in thin films and superlattices: results of numerical modeling,” Ferroelectrics, vol. 359, no. 1, pp. 14–20, 2007. View at Publisher · View at Google Scholar · View at Scopus
  164. M. Axenides, S. Komineas, L. Perivolaropoulos, and M. Floratos, “Dynamics of nontopological solitons: Q balls,” Physical Review D, vol. 61, no. 8, Article ID 085006, pp. 1–11, 2000. View at Scopus
  165. L. Baudry, I. A. Lukyanchuk, and A. Sene, “Inhomogeneous polarization switching in finite-size cubic ferroelectrics,” Ferroelectrics, vol. 427, pp. 34–40, 2012. View at Publisher · View at Google Scholar
  166. L. Baudry, I. A. Lukyanchuk, and A. Sene, “Switching properties of nano-scale multi-axial ferroelectrics: geometry and interface effects,” Integrated Ferroelectrics, vol. 133, pp. 96–102, 2012. View at Publisher · View at Google Scholar
  167. D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, “Magnetic domain-wall logic,” Science, vol. 309, no. 5741, pp. 1688–1692, 2005. View at Publisher · View at Google Scholar · View at Scopus
  168. S. S. P. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall racetrack memory,” Science, vol. 320, no. 5873, pp. 190–194, 2008. View at Publisher · View at Google Scholar · View at Scopus
  169. G. Catalan, J. Seidel, R. Ramesh, and J. F. Scott, “Domain wall nanoelectronics,” Reviews of Modern Physics, vol. 84, pp. 119–156, 2012. View at Publisher · View at Google Scholar
  170. G. Catalan, H. Béa, S. Fusil et al., “Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3,” Physical Review Letters, vol. 100, no. 2, Article ID 027602, 2008. View at Publisher · View at Google Scholar · View at Scopus
  171. G. A. Smolensky, V. A. Isupov, and A. I. Agranovskaya, “Ferroelectrics of the oxygen octahedral type with layered structure,” Soviet Physics, vol. 3, no. 3, pp. 651–655, 1961.
  172. R. Palai, R. S. Katiyar, H. Schmid et al., “β phase and γ-β metal-insulator transition in multiferroic BiFeO3,” Physical Review B, vol. 77, no. 1, Article ID 014110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  173. G. Catalan and J. F. Scott, “Physics and applications of bismuth ferrite,” Advanced Materials, vol. 21, no. 24, pp. 2463–2485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  174. D. C. Arnold, K. S. Knight, F. D. Morrison, and P. Lightfoot, “Ferroelectric-paraelectric transition in BiFeO3: crystal structure of the orthorhombic β phase,” Physical Review Letters, vol. 102, no. 2, Article ID 027602, 2009. View at Publisher · View at Google Scholar · View at Scopus
  175. D. C. Arnold, K. S. Knight, G. Catalan et al., “The β-to-γ transition in BiFeO3: a powder neutron diffraction study,” Advanced Functional Materials, vol. 20, no. 13, pp. 2116–2123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  176. X. Martí, P. Ferrer, J. Herrero-Albillos et al., “Skin layer of BiFeO3 single crystals,” Physical Review Letters, vol. 106, no. 23, Article ID 236101, 2011. View at Publisher · View at Google Scholar · View at Scopus
  177. M. Polomska, W. Kaczmarek, and Z. Pajak, “Electric and magnetic properties of (Bi1-XLaX)FeO3 solid solutions,” Physica Status Solidi A, vol. 23, no. 2, pp. 567–574, 1974. View at Scopus
  178. A. Kumar, J. F. Scott, R. Martinez, G. Srinivasan, and R. S. Katiyar, “In-plane dielectric and magnetoelectric studies of BiFeO3,” Physica Status Solidi, vol. 309, pp. 1207–1212, 2012.
  179. A. Kumar, J. F. Scott, and R. S. Katiyar, “Magnon raman spectroscopy and in-plane dielectric response in BiFeO3: relation to the polomska transition,” Physical Review B, vol. 85, Article ID 224410, 2012.
  180. M. K. Singh, R. S. Katiyar, and J. F. Scott, “New magnetic phase transitions in BiFeO3,” Journal of Physics Condensed Matter, vol. 20, no. 25, Article ID 252203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  181. M. Cazayous, Y. Gallais, A. Sacuto, R. De Sousa, D. Lebeugle, and D. Colson, “Possible observation of cycloidal electromagnons in BiFeO3,” Physical Review Letters, vol. 101, no. 3, Article ID 037601, 2008. View at Publisher · View at Google Scholar · View at Scopus
  182. J. F. Scott, M. K. Singh, and R. S. Katiyar, “Critical phenomena at the 140 and 200 K magnetic phase transitions in BiFeO3,” Journal of Physics Condensed Matter, vol. 20, no. 32, Article ID 322203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  183. R. Jarrier, X. Marti, J. Herrero-Albillos, et al., “Surface phase transitions in BiFeO3 below room temperature,” Physical Review B, vol. 85, Article ID 184104, 2012.
  184. J. Herrero-Albillos, G. Catalan, J. A. Rodriguez-Velamazan, M. Viret, D. Colson, and J. F. Scott, “Neutron diffraction study of the BiFeO3 spin cycloid at low temperature,” Journal of Physics Condensed Matter, vol. 22, no. 25, Article ID 256001, 2010. View at Publisher · View at Google Scholar · View at Scopus
  185. M. Tonouchi, “THz radiation by optically controlled depolarization in BiFeO3,” in Proceedings of the 35th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz '10), Rome, Italy, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  186. L. Esaki and R. Tsu, “Superlattice and negative differential conductivity in semiconductors,” IBM Journal of Research and Development, vol. 14, no. 1, pp. 61–65, 1970. View at Scopus
  187. K. M. Rabe, M. Dawber, C. Lichtensteiger, C. H. Ahn, and J. M. Triscone, “Modern physics of ferroelectrics: essential background,” Topics in Applied Physics, vol. 105, pp. 1–30, 2007. View at Publisher · View at Google Scholar · View at Scopus
  188. M. Dawber, C. Lichtensteiger, M. Cantoni et al., “Unusual behavior of the ferroelectric polarization in PbTiO3/SrTiO3 superlattices,” Physical Review Letters, vol. 95, no. 17, Article ID 177601, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  189. J. Y. Jo, P. Chen, R. J. Sichel et al., “Nanosecond dynamics of ferroelectric/dielectric superlattices,” Physical Review Letters, vol. 107, no. 5, Article ID 055501, 2011. View at Publisher · View at Google Scholar · View at Scopus
  190. R. Martínez, A. Kumar, R. Palai, R. S. Katiyar, and J. F. Scott, “Study of physical properties of integrated ferroelectric/ferromagnetic heterostructures,” Journal of Applied Physics, vol. 107, no. 11, Article ID 114107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  191. P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J. M. Triscone, “Interface physics in complex oxide heterostructures,” Annual Review of CondensedMatter Physics, vol. 2, pp. 141–165, 2011. View at Publisher · View at Google Scholar
  192. S. M. Nakhmanson, K. M. Rabe, and D. Vanderbilt, “Predicting polarization enhancement in multicomponent ferroelectric superlattices,” Physical Review B, vol. 73, no. 6, Article ID 060101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  193. A. Q. Jiang, J. F. Scott, H. B. Lu, and Z. Chen, “Phase transitions and polarizations in epitaxial BaTiO3/SrTiO3 superlattices studied by second-harmonic generation,” Journal of Applied Physics, vol. 93, pp. 1180–1185, 2003.
  194. S. Ríos, A. Ruediger, A. Q. Jiang, J. F. Scott, H. Lu, and Z. Chen, “Orthorhombic strontium titanate in BaTiO3-SrTiO3 superlattices,” Journal of Physics Condensed Matter, vol. 15, no. 21, pp. L305–L309, 2003. View at Publisher · View at Google Scholar · View at Scopus
  195. K. Johnston, X. Y. Huang, J. B. Neaton, and K. M. Rabe, “Unusual behavior of the polarization in BaTiO3/SrTiO3 superlattices,” Physical Review B, vol. 71, no. 10, Article ID 100103, 2005.
  196. T. Shigenari, K. Abe, T. Takemoto et al., “Raman spectra of the ferroelectric phase of Sr Ti18O3: symmetry and domains below Tc and the origin of the phase transition,” Physical Review B, vol. 74, no. 17, Article ID 174121, 2006. View at Publisher · View at Google Scholar · View at Scopus
  197. J. F. Scott, J. Bryson, M. A. Carpenter, J. Herrero-Albillos, and M. Itoh, “Elastic and anelastic properties of ferroelectric SrTi18O3 in the kHz-MHz regime,” Physical Review Letters, vol. 106, no. 10, Article ID 105502, 2011. View at Publisher · View at Google Scholar · View at Scopus
  198. M. Takesada, M. Itoh, and T. Yagi, “Perfect softening of the ferroelectric mode in the isotope-exchanged strontium titanate of (SrTiO3)-18O studied by light scattering,” Physical Review Letters, vol. 96, no. 22, Article ID 227602, 2006. View at Publisher · View at Google Scholar · View at Scopus
  199. M. Dawber, N. Stucki, C. Lichtensteiger, S. Gariglio, and J. M. Triscone, “New phenomena at the interfaces of very thin ferroelectric oxides,” Journal of Physics Condensed Matter, vol. 20, no. 26, Article ID 264015, 2008. View at Publisher · View at Google Scholar · View at Scopus
  200. N. Reyren, S. Thiel, A. D. Caviglia et al., “Superconducting interfaces between insulating oxides,” Science, vol. 317, no. 5842, pp. 1196–1199, 2007. View at Publisher · View at Google Scholar · View at Scopus
  201. S. A. Hayward, F. D. Morrison, S. A. T. Redfern et al., “Transformation processes in LaAlO3: neutron diffraction, dielectric, thermal, optical, and Raman studies,” Physical Review B, vol. 72, no. 5, Article ID 054110, 2005. View at Publisher · View at Google Scholar · View at Scopus
  202. V. M. Fridkin, Photoferroelectrics, Springer, Berlin, Germany, 1979.
  203. J. Seidel, P. Maksymovych, Y. Batra et al., “Domain wall conductivity in La-doped BiFeO3,” Physical Review Letters, vol. 105, no. 19, Article ID 197603, 2010. View at Publisher · View at Google Scholar · View at Scopus
  204. D. Daranciang, M. Highland, H. Wen, et al., “Ultrafast photovoltaic response in ferroelectric nanolayers,” Physical Review Letters, vol. 108, no. 8, Article ID 087601, 2012.
  205. N. Laman, M. Bieler, and H. M. Van Driel, “Ultrafast shift and injection currents observed in wurtzite semiconductors via emitted terahertz radiation,” Journal of Applied Physics, vol. 98, no. 10, Article ID 103507, 8 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  206. M. Alexe and D. Hesse, “Tip-enhanced photovoltaic effects in bismuth ferrite,” Nature Communications, vol. 2, no. 1, article 256, 2011. View at Publisher · View at Google Scholar · View at Scopus
  207. A. Anikiev, L. G. Reznik, B. S. Umarov, and J. F. Scott, “Perturbed polariton spectra in optically damaged LiNbO3,” Ferroelectrics Letters, vol. 3, pp. 89–96, 1985.
  208. L. G. Reznik, A. A. Anikiev, B. S. Umarov, and J. F. Scott, “Studies of optical damage in lithium niobate in the presence of thermal gradients,” Ferroelectrics, vol. 64, pp. 215–219, 1985. View at Publisher · View at Google Scholar
  209. L. Landau, “The theory of phase transitions,” Nature, vol. 138, no. 3498, pp. 840–841, 1936. View at Scopus
  210. A. F. Devonshire, “Theory of BaTiO3,” Philosophical Magazine, vol. 40, no. 309, pp. 1040–1063, 1949.
  211. A. F. Ermolov, A. P. Levanyuk, and A. S. Sigov, “Anomaly of high frequency sound absorption near the point of structurakl phase transitions in crystals with defects,” Fizika Tverdogo Tela, vol. 21, no. 12, pp. 3628–3633, 1979.
  212. A. P. Levanyuk and A. S. Sigov, “The influence of defects on the properties of ferroelectrics and related materials near the point of a 2nd kind of phase transition,” Izvestia Akademii Nauk SSSR, vol. 45, no. 9, pp. 1640–1645, 1981.
  213. A. I. Morozov and A. S. Sigov, “Point defect near the displacive phase transition,” Fizika Tverdogo Tela, vol. 25, no. 5, pp. 1352–1356, 1983.
  214. Y. M. Kishinets, A. P. Levanyuk, A. I. Morozov, and A. S. Sigov, “Absorption coefficient and sound velocity anomalies in the vicinity of phase transitions of the 2nd kind in crystals with dislocations,” Fizika Tverdogo Tela, vol. 29, no. 2, pp. 601–604, 1987.
  215. I. J. Fritz, “Ultrasonic attenuation and mechanism for the 250°K antiferrodistortive transition in BaMnF4,” Physical Review Letters, vol. 35, no. 22, pp. 1511–1514, 1975. View at Publisher · View at Google Scholar · View at Scopus
  216. I. J. Fritz, “Ultrasonic velocity measurements near the 250°K phase transition in BaMnF4,” Physics Letters A, vol. 51, no. 4, pp. 219–220, 1975. View at Scopus
  217. T. Chen, S.-J. Sheih, and J. F. Scott, “Temporal dependence of thermal self-focussing in ferroelectric Ba2NaNb5O15 and Ce+3:SrXBa1-XNb2O6,” Ferroelectrics, vol. 120, pp. 115–129, 1991. View at Publisher · View at Google Scholar
  218. V. Bobnar and Z. Kutnjak, “High-Temperature dielectric response of (1-x)PbMg1/3Nb2/3O3 -(x)PbTiO3: does burns temperature exist in ferroelectric relaxors?” Journal of Applied Physics, vol. 107, Article ID 084104, 2010.
  219. J. F. Scott, “Comment on 'High-Temperature dielectric response of (1-x)PbMg1/3Nb2/3O3 –(x)PbTiO3: does burns temperature exist in ferroelectric relaxors?',” Journal of Applied Physics, vol. 108, no. 8, Article ID 086107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  220. K. Samanta, A. K. Arora, T. R. Ravindran, S. Ganesamoorthy, K. Kitamura, and S. Takekawa, “Raman spectroscopic study of structural transition in SrxBa1-xNb2O6,” Vibrational Spectroscopy, vol. 62, pp. 273–278, 2012. View at Publisher · View at Google Scholar
  221. J. Dec, private communication.
  222. W. J. Burke, R. J. Pressley, and J. C. Slonczewski, “Raman scattering and phase transitions in stressed SrTiO3,” Solid State Communications, vol. 9, no. 2, pp. 121–124, 1971. View at Scopus
  223. W. J. Burke and R. J. Pressley, “Stress induced ferroelectricity in SrTiO3,” Solid State Communications, vol. 9, no. 3, pp. 191–195, 1971. View at Scopus
  224. S. L. Qiu, M. Dutta, H. Z. Cummins, J. P. Wicksted, and S. M. Shapiro, “Extension of the Lifshitz-point concept to first-order phase transitions: incommensurate NaNO2 in a transverse electric field,” Physical Review B, vol. 34, no. 11, pp. 7901–7910, 1986. View at Publisher · View at Google Scholar · View at Scopus
  225. N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, “Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films,” Physical Review Letters, vol. 80, no. 9, pp. 1988–1991, 1998. View at Scopus
  226. S. P. P. Jones, D. M. Evans, M. A. Carpenter et al., “Phase diagram and phase transitions in ferroelectric tris-sarcosine calcium chloride and its brominated isomorphs,” Physical Review B, vol. 83, no. 9, Article ID 094102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  227. J. F. Scott, “Dielectrics,” Encyclopedia of Applied Physics, vol. 5, pp. 25–35, 1993.
  228. K. Lee, M. Lee, K. S. Lee, and A. R. Lim, “1H NMR study of the phase transitions of trissarcosine calcium chloride single crystals at low temperature,” Journal of Physics and Chemistry of Solids, vol. 66, no. 10, pp. 1739–1743, 2005. View at Publisher · View at Google Scholar · View at Scopus
  229. H. Haga, A. Onodera, H. Yamashita, and Y. Shiosaki, “New phase transition in ferroelectric tris-sarcosine calcium chloride at low temperature,” Journal of the Physical Society of Japan, vol. 62, pp. 1857–1859, 1993. View at Publisher · View at Google Scholar
  230. R. B. Laughlin, G. G. Lonzarich, P. Monthoux, and D. Pines, “The quantum criticality conundrum,” Advances in Physics, vol. 50, no. 4, pp. 361–365, 2001. View at Publisher · View at Google Scholar · View at Scopus
  231. E. Fradkin and S. A. Kivelson, “Electron nematic phases proliferate,” Science, vol. 327, no. 5962, pp. 155–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  232. S. Rowley, R. Smith, and M. Dean, “Ferromagnetic and ferroelectric quantum phase transitions,” Physica Status Solidi B, vol. 247, pp. 469–475, 2010. View at Publisher · View at Google Scholar
  233. J. F. Scott, R. Pirc, A. Levstik, C. Filipic, and R. Blinc, “Resolving the quantum criticality paradox in O-18 isotopic SrTiO3,” Journal of Physics Condensed Matter, vol. 18, no. 16, pp. L205–L208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  234. W. Windsch, H. Braeter, U. Gutteck, B. Malige, and B. Milsch, “The concentration dependence of the ferroelectric transition temperature of the solid solution of TSCC and TSCB,” Solid State Communications, vol. 42, no. 12, pp. 839–842, 1982. View at Scopus
  235. H. Suzuki, S. Naher, T. Shimoguchi, M. Mizuno, A. Ryu, and H. Fujishita, “X-ray diffraction measurement below 1 K,” Journal of Low Temperature Physics, vol. 128, no. 1-2, pp. 1–7, 2002. View at Publisher · View at Google Scholar · View at Scopus
  236. S. E. Rowley, L. J. Spalek, R. P. Smith et al., “Ferroelectric quantum criticality,” Nature. In press.
  237. S. E. Rowley, R. Smith, M. L. Sutherland, P. Alireza, S. S. Saxena, and G. G. Lonzarich, “Quantum criticality and unconventional order in magnetic and dielectric material,” Journal of Physics: Conference Series, vol. 400, Article ID 032048, 2012. View at Publisher · View at Google Scholar
  238. A. V. Bune, V. M. Fridkin, S. Ducharme et al., “Two-dimensional ferroelectric films,” Nature, vol. 391, no. 6670, pp. 874–877, 1998. View at Publisher · View at Google Scholar · View at Scopus
  239. R. Gaynutdinov, S. Yudin, S. Ducharme, and V. Fridkin, “Homogeneous switching in ultrathin ferroelectric films,” Journal of Physics Condensed Matter, vol. 24, no. 1, Article ID 015902, 2012.
  240. L. Zhang, “Field induced phase transition and dielectric energy density in PVDF terpolymers,” Europhysics Letters, vol. 91, Article ID 47001, 2010. View at Publisher · View at Google Scholar
  241. J. F. Scott, “Switching of ferroelectrics without domains,” Advanced Materials, vol. 22, no. 46, pp. 5315–5317, 2010. View at Scopus
  242. M. J. Highland, T. T. Fister, M. I. Richard et al., “Polarization switching without domain formation at the intrinsic coercive field in ultrathin ferroelectric PbTiO3,” Physical Review Letters, vol. 105, no. 16, Article ID 167601, 2010. View at Publisher · View at Google Scholar · View at Scopus
  243. J. F. Scott, “Lattice perturbations in CaWO4 and CaMoO4,” The Journal of Chemical Physics, vol. 48, no. 2, pp. 874–878, 1968. View at Scopus
  244. J. F. Scott, “Dipole-dipole interactions in tungstates,” The Journal of Chemical Physics, vol. 49, no. 1, pp. 98–100, 1968. View at Scopus
  245. W. Ma and L. E. Cross, “Flexoelectricity of barium titanate,” Applied Physics Letters, vol. 88, Article ID 232902, 2006.
  246. W. Ma and L. E. Cross, “Flexoelectric effect in ceramic lead zirconate titanate,” Applied Physics Letters, vol. 86, no. 7, Article ID 072905, 2005.
  247. A. K. Tagantsev, “Piezoelectricity and flexoelectricity in crystalline dielectrics,” Physical Review B, vol. 34, no. 8, pp. 5883–5889, 1986. View at Publisher · View at Google Scholar · View at Scopus
  248. P. Zubko, G. Catalan, P. R. L. Welche, A. Buckley, and J. F. Scott, “Strain gradient induced polarization in SrTiO3,” Physical Review Letters, vol. 99, Article ID 167601, 2007.
  249. J. Hong, G. Catalan, J. F. Scott, and E. Artacho, “The flexoelectricity of barium and strontium titanates from first principles,” Journal of Physics Condensed Matter, vol. 22, no. 11, Article ID 112201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  250. R. Resta, “Towards a bulk theory of flexoelectricity,” Physical Review Letters, vol. 105, no. 12, Article ID 127601, 2010. View at Publisher · View at Google Scholar · View at Scopus
  251. J.-W. Hong and D. Vanderbilt, “First-principles theory of frozen-ion flexoelectricity,” Physical Review B, vol. 84, no. 18, Article ID 180101, 2011.
  252. H. Zhou, J. Hong, Y. Zhang, F. Li, Y. Pei, and D. Fang, “External uniform electric field removing flexoelectric effect in epitaxial ferroelectric thin films,” Europhysics Letters, vol. 99, no. 4, Article ID 47003. View at Publisher · View at Google Scholar
  253. D. Lee, A. Yoon, S. Y. Jang et al., “Giant flexoelectric effect in ferroelectric epitaxial thin films,” Physical Review Letters, vol. 107, no. 5, Article ID 057602, 2011. View at Publisher · View at Google Scholar · View at Scopus
  254. H. Lu, C. W. Bark, D. E. De los Ojos et al., “Mechanical writing of ferroelectric polarization,” Science, vol. 336, no. 6077, pp. 59–61, 2012. View at Publisher · View at Google Scholar
  255. L. E. Cross, “Relaxor ferroelectrics,” Ferroelectrics, vol. 76, no. 3-4, pp. 241–267, 1987. View at Publisher · View at Google Scholar
  256. M. D. Glinchuk, “Relaxor ferroelectrics: from cross superparaelectric model to random field theory,” British Ceramic Transactions, vol. 103, no. 2, pp. 76–82, 2004. View at Scopus
  257. R. Pirc and R. Blinc, “Spherical random-bond-random-field model of relaxor ferroelectrics,” Physical Review B, vol. 60, no. 19, pp. 13470–13478, 1999. View at Scopus
  258. R. Pirc and R. Blinc, “Vogel-Fulcher freezing in relaxor ferroelectrics,” Physical Review B, vol. 76, no. 2, Article ID 020101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  259. Z. Kutnjak, J. Petzelt, and R. Blinc, “The giant electromechanical response in ferroelectric relaxors as a critical phenomenon,” Nature, vol. 441, no. 7096, pp. 956–959, 2006. View at Publisher · View at Google Scholar · View at Scopus
  260. J. Dec, W. Kleemann, and V. V. Shvartsman, “From mesoscopic to global polar order in the uniaxial relaxor ferroelectric Sr0.8Ba0.2Nb2O6,” Applied Physics Letters, vol. 100, no. 5, Article ID 052903, 2012.
  261. J. F. Scott, “Absence of true critical exponents in relaxor ferroelectrics: the case for defect dynamics,” Journal of Physics Condensed Matter, vol. 18, no. 31, pp. 7123–7134, 2006. View at Publisher · View at Google Scholar · View at Scopus
  262. W. Kleemann, J. Dec, V. V. Shvartsman, Z. Kutnjak, and T. Braun, “Two-dimensional ising model criticality in a three-dimensional uniaxial relaxor ferroelectric with frozen polar nanoregions,” Physical Review Letters, vol. 97, no. 6, Article ID 065702, 2006. View at Publisher · View at Google Scholar · View at Scopus
  263. D. Pajic, Z. Jaglicic, M. Jagodic et al., “Low temperature magnetic behaviour of PZT-PFW bulk multiferroic ceramics,” Journal of Physics Conference Series, vol. 303, Article ID 012065, 2011.
  264. H. Zheng, J. Wang, S. E. Lofland et al., “Multiferroic BaTiO3-CoFe2O4 nanostructures,” Science, vol. 303, no. 5658, pp. 661–663, 2004. View at Publisher · View at Google Scholar · View at Scopus
  265. C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, “Multiferroic magnetoelectric composites: historical perspective, status, and future directions,” Journal of Applied Physics, vol. 103, no. 3, Article ID 031101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  266. C. Israel, N. D. Mathur, and J. F. Scott, “A one-cent room-temperature magnetoelectric sensor,” Nature Materials, vol. 7, no. 2, pp. 93–94, 2008. View at Publisher · View at Google Scholar · View at Scopus
  267. Z. Hu, M. Tian, B. Nysten, and A. M. Jonas, “Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories,” Nature Materials, vol. 8, no. 1, pp. 62–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  268. K. Asadi, H. J. Wondergem, R. S. Moghaddam et al., “Organic ferroelectric opto-electronic memories,” Materials Today, vol. 14, no. 12, pp. 592–599, 2011.
  269. T. J. Reece, S. Ducharme, A. V. Sorokin, and M. Poulsen, “Nonvolatile memory element based on a ferroelectric polymer Langmuir-Blodgett film,” Applied Physics Letters, vol. 82, no. 1, pp. 142–144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  270. M.-Y. Li, N. Stingelin, J. Jasper et al., “Processing and low voltage switching of organic ferroelectric phase-separated bistable diodes,” Advanced Functional Materials, vol. 22, no. 12, pp. 2750–2757, 2012.
  271. P. Kobeko and J. Kurtschatov, “Pielectric (sic) properties of Rochelle salt crystals,” Zeitschrift für Physik, vol. 66, no. 3-4, pp. 192–205, 1930. View at Publisher · View at Google Scholar · View at Scopus
  272. Y. Liu, X.-P. Peng, X.-J. Lou, and H. Zhou, “Intrinsic electrocaloric effect in ultrathin ferroelectric capacitors,” Applied Physics Letters, vol. 100, Article ID 192902, 2012.
  273. C. Israel, S. Kar-Narayan, and N. D. Mathur, “Eliminating the temperature dependence of the response of magnetoelectric magnetic-Field sensors,” IEEE Sensors Journal, vol. 10, no. 5, pp. 914–917, 2010. View at Publisher · View at Google Scholar · View at Scopus
  274. S. Kar-Narayan and N. D. Mathur, “Direct and indirect electrocaloric measurements using multilayer capacitors,” Journal of Physics D, vol. 43, no. 3, Article ID 032002, 2010. View at Publisher · View at Google Scholar · View at Scopus
  275. S. Kar-Narayan and N. D. Mathur, “Predicted cooling powers for multilayer capacitors based on various electrocaloric and electrode materials,” Applied Physics Letters, vol. 95, no. 24, Article ID 242903, 2009. View at Publisher · View at Google Scholar · View at Scopus
  276. C. Israel, S. Kar-Narayan, and N. D. Mathur, “Converse magnetoelectric coupling in multilayer capacitors,” Applied Physics Letters, vol. 93, no. 17, Article ID 173501, 2008. View at Publisher · View at Google Scholar · View at Scopus
  277. Q. M. Zhang, V. Bharti, and X. Zhao, “Giant electrostriction and relaxor ferroelectric behavior in electron- irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer,” Science, vol. 280, no. 5372, pp. 2101–2104, 1998. View at Publisher · View at Google Scholar · View at Scopus
  278. S. G. Lu, B. Rožič, Q. M. Zhang et al., “Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect,” Applied Physics Letters, vol. 97, no. 16, Article ID 162904, 2010. View at Publisher · View at Google Scholar · View at Scopus
  279. S. Prosandeev, I. Ponomareva, and L. Bellaiche, “Electrocaloric effect in bulk and low-dimensional ferroelectrics from first principles,” Physical Review B, vol. 78, no. 5, Article ID 052103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  280. Y. Liu, Y. Zhang, M.-J. Chen, Q. N. Chen, and J. Li, “Biological ferroelectricity discovered in aorta walls by piezo force microscopy,” Physical Review Letters, vol. 108, Article ID 078103, 2012.
  281. T. Li and K. Zeng, “Piezoelectric properties and surface potential of green abalone shell studied by scanning probe microscopy techniques,” Acta Materialia, vol. 59, no. 9, pp. 3667–3679, 2011. View at Publisher · View at Google Scholar · View at Scopus
  282. A. Heredia, V. Meunier, I. K. Bdikin et al., “Nanoscale ferroelectricity in crystalline γ-glycine,” Advanced Functional Materials, vol. 22, no. 14, pp. 2996–3003, 2012. View at Publisher · View at Google Scholar
  283. J. F. Scott, “Electrocaloric materials,” Annual Review of Materials Research, vol. 41, pp. 229–240, 2011. View at Publisher · View at Google Scholar
  284. R. Plumlee, Sandia Laboratories Report SC-RR-67-730, 1967.
  285. X. Lou, X. Hu, M. Zhang, S. A. T. Redfern, E. A. Kafadaryan, and J. F. Scott, “Nano-shorts,” Reviews on Advanced Materials Science, vol. 10, no. 3, pp. 197–204, 2005. View at Scopus
  286. X. Lou, X. Hu, M. Zhang, F. D. Morrison, S. A. T. Redfern, and J. F. Scott, “Phase separation in lead zirconate titanate and bismuth titanate during electrical shorting and fatigue,” Journal of Applied Physics, vol. 99, no. 4, Article ID 044101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  287. R. Waser, R. Dittmann, C. Staikov, and K. Szot, “Redox-based resistive switching memories nanoionic mechanisms, prospects, and challenges,” Advanced Materials, vol. 21, no. 25-26, pp. 2632–2663, 2009. View at Publisher · View at Google Scholar · View at Scopus
  288. D. S. Jeong, R. Thomas, R. S. Katiyar et al., “Emerging memories: resistive switching mechanisms and current status,” Reports on Progress in Physics, vol. 75, Article ID 076502, 2012.
  289. P. W. M. Blom, R. M. Wolf, J. F. M. Cillessen, and M. P. C. M. Krijn, “Ferroelectric Schottky diode,” Physical Review Letters, vol. 73, no. 15, pp. 2107–2110, 1994. View at Publisher · View at Google Scholar · View at Scopus
  290. A. Q. Jiang, C. Wang, K. J. Jin et al., “A resistive memory in semiconducting BiFeO3 thin-film capacitors,” Advanced Materials, vol. 23, no. 10, pp. 1277–1281, 2011. View at Publisher · View at Google Scholar · View at Scopus
  291. B. Noheda, private communication.
  292. P. Paruch, A. B. Posadas, M. Dawber, C. H. Ahn, and P. L. McEuen, “Polarization switching using single-walled carbon nanotubes grown on epitaxial ferroelectric thin films,” Applied Physics Letters, vol. 93, no. 13, Article ID 132901, 2008. View at Publisher · View at Google Scholar · View at Scopus
  293. S. Kawasaki, G. Catalan, H. J. Fan, and J. F. Scott, “Conformal oxide coating of carbon nanotubes,” Applied Physics Letters, vol. 92, Article ID 053109, 2008.
  294. A. Kumar, S. G. Shivareddy, M. Correa et al., “Ferroelectric-carbon nanotube memory devices,” Nanotechnology, vol. 23, no. 16, Article ID 165702, 2012.
  295. F. Mendoza, A. Kumar, R. Martinez et al., “Conformal coating of ferroelectric oxides on carbon nanotubes,” Europhysics Letters, vol. 97, no. 2, Article ID 27001, 2012.
  296. Y. Zheng, X. N. Guang, C.-T. Toh, C.-Y. Tan, K. Yao, and B. Özyilmaz, “Graphene field-effect transistors with ferroelectric gating,” Physical Review Letters, vol. 105, Article ID 166602, 2010.
  297. F. D. Morrison, Y. Luo, I. Szafraniak, et al., “Ferroelectric nanotubes,” Reviews of Advances in Materials Science, vol. 4, pp. 114–122, 2003.
  298. J. Hong, G. Catalan, D. N. Fang, E. Artacho, and J. F. Scott, “Topology of the polarization field in ferroelectric nanowires from first principles,” Physical Review B, vol. 81, no. 17, Article ID 172101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  299. V. L. Gurevuch and A. K. Tagantsev, “Second sound in ferroelectrics,” Journal of Experimental and Theoretical Physics, vol. 67, no. 1, pp. 206–212, 1988.
  300. B. Hehlen, L. Arzel, A. K. Tagantsev et al., “Brillouin-scattering observation of the TA-TO coupling in SrTiO3,” Physical Review B, vol. 57, no. 22, pp. R13989–R13992, 1998. View at Scopus
  301. A. Koreeda, R. Takano, and S. Saikan, “Second sound in SrTiO3,” Physical Review Letters, vol. 99, no. 26, Article ID 265502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  302. E. Courtens, B. Hehlen, E. Farhi, and A. K. Tagantsev, “Optical mode crossings and the low temperature anomalies of SrTiO3,” Zeitschrift fur Physik B-Condensed Matter, vol. 104, no. 4, pp. 641–642, 1997. View at Scopus
  303. P. A. Fleury, J. F. Scott, and J. M. Worlock, “Soft phonon modes and the 110°K phase transition in SrTiO3,” Physical Review Letters, vol. 21, no. 1, pp. 16–19, 1968. View at Publisher · View at Google Scholar · View at Scopus
  304. R. Blinc, V. V. Laguta, B. Zalar, M. Itoh, and H. Krakauer, “17O quadrupole coupling and the origin of ferroelectricity in isotopically enriched BaTiO3 and SrTiO3,” Journal of Physics Condensed Matter, vol. 20, no. 8, Article ID 085204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  305. J. F. Scott, M. A. Carpenter, and E. K.-H. Salje, “Domain wall damping and elastic softening in SrTiO3, evidence for polar twin walls,” Physical Review Letters, vol. 109, no. 18, Article ID 187601, 2012.
  306. M. Bartkowiak, private communication.
  307. M. Bartkowiak, G. J. Kearley, M. Yethiraj, and A. M. Mulders, “Symmetry of ferroelectricphase of (SrTiO3)-18O determined by ab initio calculations,” Physical Review B, vol. 83, no. 6, Article ID 064102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  308. E. Y. Tsymbal, A. Gruverman, V. Garcia, M. Bibes, and A. Barthelemy, “Ferroelectric and multiferroic tunnel junctions,” MRS Bulletin, vol. 37, no. 2, pp. 138–143, 2012.
  309. M. Bibes and A. Barthélémy, “Multiferroics: towards a magnetoelectric memory,” Nature Materials, vol. 7, no. 6, pp. 425–426, 2008. View at Publisher · View at Google Scholar · View at Scopus
  310. A. Chanthbouala, A. Crassous, V. Garcia, et al., “Solid-state memories based on ferroelectric tunnel junctions,” Nature Nanotechnology, vol. 7, no. 2, pp. 101–104, 2012.
  311. M. Gajek, M. Bibes, S. Fusil et al., “Tunnel junctions with multiferroic barriers,” Nature Materials, vol. 6, no. 4, pp. 296–302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  312. L. E. Hueso, J. M. Pruneda, V. Ferrari et al., “Transformation of spin information into large electrical signals using carbon nanotubes,” Nature, vol. 445, no. 7126, pp. 410–413, 2007. View at Publisher · View at Google Scholar · View at Scopus
  313. R. E. Cohen, “Origin of ferroelectricity in perovskite oxides,” Nature, vol. 358, no. 6382, pp. 136–138, 1992. View at Scopus
  314. N. A. Hill, “Why are there so few magnetic ferroelectrics?” Journal of Physical Chemistry B, vol. 104, no. 29, pp. 6694–6709, 2000. View at Scopus