About this Journal Submit a Manuscript Table of Contents
ISRN Materials Science
Volume 2013 (2013), Article ID 189659, 8 pages
http://dx.doi.org/10.1155/2013/189659
Research Article

Piezoelectric Microfiber Composite Actuators for Morphing Wings

Department of Physics, California State University at San Bernardino, 5500 University Parkway, San Bernardino, CA 92407, USA

Received 27 November 2012; Accepted 22 December 2012

Academic Editors: I. Dubenko and K. Hokamoto

Copyright © 2013 Timothy D. Usher et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Giurgiutiu, “Recent advances in smart-material rotor control actuation,” in Proceedings of the 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and ExhibitAIAA/ASME/AHS Adaptive Structures Forum, pp. 237–247, AIAA, Atlanta, Ga, USA, April 2000, Paper # AIAA 2000-1709. View at Scopus
  2. J. L. San Emeterio and A. Ramos, “Models for piezoelectric transducers used in broadband ultrasonic applications,” in Piezoelectric Transducers and Applications, A. A. Vives, Ed., pp. 97–110, Springer, New York, NY, USA, 2nd edition, 2008.
  3. Y. Sugawara, K. Onitsuka, S. Yoshikawa, Q. C. Xu, R. E. Newnham, and K. Uchino, “Metal-ceramic composite actuators,” Journal of the American Ceramic Society, vol. 75, no. 4, pp. 996–998, 1992. View at Publisher · View at Google Scholar
  4. G. H. Haertling, “RAINBOW ceramics—a new type of ultra-high-displacement actuator,” American Ceramic Society Bulletin, vol. 73, no. 1, pp. 93–96, 1994.
  5. K. M. Mossi, G. V. Selby, and R. G. Bryant, “Thin-layer composite unimorph ferroelectric driver and sensor properties,” Materials Letters, vol. 35, no. 1-2, pp. 39–49, 1998. View at Scopus
  6. K. J. Yoon, S. S. Shin, H. C. Park, and M. K. Kwak, “Development of lightweight THUNDER with fiber composite layers,” in Smart Structures and Materials 2000: Active Materials: Behavior and Mechanics, vol. 3992 of Proceedings of SPIE, pp. 57–64, Newport Beach, Calif, USA, March 2000. View at Publisher · View at Google Scholar
  7. K. G. Webber, D. P. Hopkinson, and C. S. Lynch, “Application of a classical lamination theory model to the design of piezoelectric composite unimorph actuators,” Journal of Intelligent Material Systems and Structures, vol. 17, no. 1, pp. 29–34, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. W. K. Wilkie, R. G. Bryant, J. W. High, R. L. Fox, R. F. Hellbaum, A. Jalink Jr., et al., “Low-cost piezocomposite actuator for structural control applications,” in Smart Structures and Materials 2000: Industrial and Commercial Applications of Smart Structures Technologies, vol. 3991 of Proceedings of SPIE, pp. 323–334, Newport Beach, Calif, USA, March 2000. View at Publisher · View at Google Scholar
  9. J. A. Palmer, B. Dessent, J. F. Mulling et al., “The design and characterization of a novel piezoelectric transducer-based linear motor,” IEEE/ASME Transactions on Mechatronics, vol. 9, no. 2, pp. 392–398, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Ganguli, “Survey of recent developments in rotorcraft design optimization,” Journal of Aircraft, vol. 41, no. 3, pp. 493–510, 2004. View at Scopus
  11. S. C. Galea, T. G. Ryall, D. A. Henderson, R. W. Moses, E. V. White, and D. G. Zimcik, “Next generation active buffet suppression system,” in Proceedings of the AIAA International Air and Space Symposium and Exposition: The Next 100 Years, Dayton, Ohio, USA, July 2003, Paper # AIAA-2003-2905.
  12. S. Barbarino, O. Bilgen, R. M. Ajaj, M. I. Friswell, and D. J. Inman, “A review of morphing aircraft,” Journal of Intelligent Material Systems and Structures, vol. 22, no. 9, pp. 823–877, 2011. View at Publisher · View at Google Scholar
  13. R. B. Williams, G. Park, D. J. Inman, and W. K. Wilkie, “An overview of composite actuators with piezoceramic fibers,” in Proceedings of the 20th International Modal Analysis Conference, vol. 4753, pp. 421–427, Los Angeles, Calif, USA, February 2002.
  14. W. K. Wilkie, J. High, and J. Bockman, “Reliability testing of NASA piezocomposite actuators,” in Proceedings of the 8th International Conference on New Actuators (Actuator 2002), Bremen, Germany, June 2002.
  15. D. Cadogan, T. Smith, R. Lee, S. Scarborough, and D. Graziosi, “Inflatable and rigidizable wing components for unmanned aerial vehicles,” in Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pp. 3688–3695, Norfolk, Va, USA, April 2003, Paper # AIAA 2003-1801. View at Scopus
  16. D. Cadogan, T. Smith, F. Uhelsky, and M. MacKusick, “Morphing inflatable wing development for compact package unmanned aerial vehicles,” in Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, pp. 3205–3217, Palm Springs, Calif, USA, April 2004, Paper # AIAA 2004-1807. View at Scopus
  17. R. W. Schwartz and M. Narayanan, “Development of high performance stress-biased actuators through the incorporation of mechanical pre-loads,” Sensors and Actuators A, vol. 101, no. 3, pp. 322–331, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Zhou and A. Chattopadhyay, “Nonlinear piezoelectric constitutive relationship and actuation for piezoelectric laminates,” in Proceedings of the 43rd Structures, Structural Dynamics and Materials Conference, pp. 1903–1913, Denver, Colo, USA, April 2002, Paper # AIAA 1438. View at Scopus
  19. R. B. Williams, Nonlinear mechanical and actuation characterization of piezoceramic fiber composites [Ph.D. thesis], Virginia Polytechnic Institute and State University, Blacksburg, Va, USA, 2004.
  20. R. B. Williams, B. W. Grimsley, D. J. Inman, and W. K. Wilkie, “Manufacturing and mechanics-based characterization of macro fiber composite actuators,” in Proceedings of the ASME International Adaptive Structures and Materials Systems Symposium, New Orleans, La, USA, November 2002.
  21. M. S. Azzouz, C. Mei, J. S. Bevan, and R. J. Jong, “Finite element modeling of MFC/AFC actuators and performance of MFC,” Journal of Intelligent Material Systems and Structures, vol. 12, no. 9, pp. 601–612, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Beckert and W. S. Kreher, “Modelling piezoelectric modules with interdigitated electrode structures,” Computational Materials Science, vol. 26, pp. 36–45, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. T. D. Usher, A. Sim, G. Ashford, G. Camargo, A. Cabanyog, and K. Ulibarri, “Modeling and applications of new piezoelectric actuator technologies,” in Smart Structures and Materials 2004: Modeling, Signal Processing, and Control, vol. 5383 of Proceedings of SPIE, pp. 31–38, San Diego, Calif, USA, March 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Mulling, T. Usher, B. Dessent et al., “Load characterization of high displacement piezoelectric actuators with various end conditions,” Sensors and Actuators A, vol. 94, no. 1-2, pp. 19–24, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Capozzoli, J. Gopalakrishnan, K. Hogan et al., “Modeling aspects concerning THUNDER actuators,” in Smart Structures and Materials: Mathematics and Control in Smart Structures, vol. 3667 of Proceedings of the SPIE, pp. 719–727, San Diego, Calif, USA, March 1999. View at Scopus
  26. A. C. Ugural and S. K. Fenster, Advanced Strength and Applied Elasticity, Prentice Hall, Upper Saddle River, NJ, USA, 4th edition, 2003.
  27. T. Usher and A. Sim, “Nonlinear dynamics of piezoelectric high displacement actuators in cantilever mode,” Journal of Applied Physics, vol. 98, no. 6, Article ID 064102, 7 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Kim, L. Cai, T. Usher, and Q. Jiang, “Fabrication and characterization of THUNDER actuators—pre-stress-induced nonlinearity in the actuation response,” Smart Materials and Structures, vol. 18, no. 9, Article ID 095033, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. L. Pinkerton and R. W. Moses, “A feasibility study to control airfoil shape using THUNDER,” NASA Technical Manuscript TM-4767, 2003, http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970041605_1997093204.pdf.
  30. C. Kennedy, T. Usher, J. Mulling, and A. Kingon, “Modeling and simulation of THUNDER actuators using ANSYS finite element analysis,” in Proceedings of the International Conference on Modeling and Simulation of Microsystems (MSM'01), pp. 330–333, Nanotech 2001, Hilton Head Island, SC, USA, March 2001. View at Scopus