About this Journal Submit a Manuscript Table of Contents
ISRN Materials Science
Volume 2013 (2013), Article ID 302408, 24 pages
http://dx.doi.org/10.1155/2013/302408
Review Article

A Review of Neutron Scattering Applications to Nuclear Materials

Los Alamos Neutron Science Center, MS H805, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Received 20 March 2013; Accepted 14 April 2013

Academic Editors: P. Karjalainen, A. O. Neto, E. Ntsoenzok, D. Sands, H. Saxén, and Y. Sun

Copyright © 2013 Sven C. Vogel. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Nuclear Power Today, 2012, http://www.world-nuclear.org/info/inf01.html.
  2. Nuclear Energy Institute, 2012, http://www.nei.org/resourcesandstats/nuclear_statistics/usnuclearpowerplants.
  3. Nuclear Power Today, 2013, http://www.world-nuclear.org/info/inf08.html.
  4. J. M. Carpenter and G. H. Lander, “40 years of neutron scattering: a perspective,” Neutron News, vol. 21, pp. 10–12, 2010.
  5. W. G. Stirling and C. Vettier, “The most useful microscopic probes—neutrons and synchrotron X-rays,” Neutron News, vol. 21, no. 1, pp. 13–17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Mampe, P. Ageron, C. Bates, J. M. Pendlebury, and A. Steyerl, “Neutron lifetime measured with stored ultracold neutrons,” Physical Review Letters, vol. 63, no. 6, pp. 593–596, 1989. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Pynn, “Neutron scattering: a primer,” Los Alamos Science, vol. 19, pp. 1–31, 1990, http://library.lanl.gov/cgi-bin/getfile?00326651.pdf.
  8. L. Dobrzyňski and K. Blinowski, Neutrons and Solid State Physics, Ellis Horwood Series: Physics (editor: M. Cooper), Ellis Horwood, 1994.
  9. A. J. Dianoux and G. Lander, Neutron Data Booklet, Institut Laue-Langevin, 2002.
  10. S. C. Vogel and H. G. Priesmeyer, “Neutron production, neutron facilities and neutron instrumentation,” Reviews in Mineralogy and Geochemistry, vol. 63, pp. 27–57, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. C. Vogel and J. S. Carpenter, “Brief introduction to neutron scattering and global neutron user facilities,” JOM: Journal of the Minerals, Metals and Materials Society, vol. 64, no. 1, pp. 104–111, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. “International Workshop on Scattering Techniques for Structural Materials at UC Berkeley,” 2013, http://scatter.nuc.berkeley.edu/.
  13. Institut Laue-Langevin, 2013, http://www.ill.eu/.
  14. OPAL, “ANSTO's research reactor,” 2013, http://www.ansto.gov.au/AboutANSTO/OPAL/index.htm.
  15. S. J. Kennedy, “Construction of the neutron beam facility at Australia's OPAL research reactor,” Physica B, vol. 385-386, part 2, pp. 949–954, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. National Research Universal (NRU), 2013, http://www.nrucanada.ca/en/home/default.aspx.
  17. B. Powell, “Neutron scattering at Chalk River,” Neutron News, vol. 1, pp. 16–20, 1990.
  18. FRM II, “Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II),” 2013, http://www.frm2.tum.de/en/index.html.
  19. “The High Flux Isotope Reactor at Oak Ridge National Laboratory,” 2013, http://neutrons.ornl.gov/facilities/HFIR/.
  20. M. Yethiraj and J. A. Fernandez-Baca, “Neutron scattering at the high flux isotope reactor at Oak Ridge national laboratory,” Materials Research Society Symposium Proceedings, vol. 376, pp. 59–70, 1995. View at Scopus
  21. NIST Center for Neutron Research, 2013, http://www.ncnr.nist.gov/.
  22. R. Cappelletti, “The national institute of standards and technology center for neutron research (NCNR),” Neutron News, vol. 12, pp. 10–14, 2001.
  23. Neutron Scattering Facilities, 2013, http://www.neutron.anl.gov/facilities.html.
  24. “About Laboratory : Frank Laboratory of Neutron Physics,” 2013, http://flnp.jinr.ru/25/.
  25. A. V. Belushkin, “IBR-2-the fast pulsed reactor at Dubna,” Neutron News, vol. 2, pp. 14–18, 1991.
  26. Paul Scherrer Institut (PSI), “Swiss Spallation Neutron Source—SINQ,” 2013, http://www.psi.ch/sinq/.
  27. G. S. Bauer, “Operation and development of the new spallation neutron source SINQ at the Paul Scherrer Institut,” Nuclear Instruments and Methods in Physics Research B, vol. 139, no. 1–4, pp. 65–71, 1998. View at Scopus
  28. Los Alamos Neutron Science Center, 2013, http://lansce.lanl.gov/.
  29. P. W. Lisowski and K. F. Schoenberg, “The Los Alamos neutron science center,” Nuclear Instruments and Methods in Physics Research A, vol. 562, no. 2, pp. 910–914, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. ISIS Home Page, 2013, http://www.isis.stfc.ac.uk/.
  31. J. Agbenyega and M. Bull, “A world of neutrons & muons,” Materials Today, vol. 12, no. 7-8, p. 59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. Neutron Sciences at Oak Ridge National Laboratory, 2013, http://www.sns.gov/.
  33. T. E. Mason, D. Abernathy, J. Ankner et al., “The spallation neutron source: a powerful tool for materials research,” in AIP Conference Proceedings, vol. 773, pp. 21–25, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. “J-PARC—Japan Proton Accelerator Research Complex,” 2013, http://j-parc.jp/index-e.html.
  35. Y. Ikeda, “Current status of 1 MW pulse spallation neutron source (JSNS) of J-PARC,” Journal of Nuclear Materials, vol. 343, no. 1–3, pp. 7–13, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. ESS (Home), 2013, http://europeanspallationsource.se/.
  37. China Spallation Neutron Source, 2013, http://csns.ihep.ac.cn/english/index.htm.
  38. W. Jie, F. Shi-Nian, T. Jing-Yu et al., “China spallation neutron source—an overview of application prospects,” Chinese Physics C, vol. 33, no. 11, pp. 1033–1042, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. P. C. Burns, R. C. Ewing, and A. Navrotsky, “Nuclear fuel in a reactor accident,” Science, vol. 335, no. 6073, pp. 1184–1188, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Bowman, G. Arnold, W. Witteman, T. Wallace, and N. Nereson, “The crystal structure of UC2,” Acta Crystallographica, vol. 21, part 5, pp. 670–671, 1966. View at Publisher · View at Google Scholar
  41. M. Bredig, “The crystal structure of UC2,” Journal of the American Ceramic Society, vol. 43, no. 9, pp. 493–494, 1960. View at Publisher · View at Google Scholar
  42. W. Wilson, “The crystal structure of UC2,” Journal of the American Ceramic Society, vol. 43, no. 2, pp. 77–80, 1960. View at Publisher · View at Google Scholar
  43. T. B. Massalski, H. Okamoto, P. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams, vol. 3, ASM International, 1990.
  44. X. D. Wen, S. P. Rudin, E. R. Batista, D. L. Clark, G. E. Scuseria, and R. L. Martin, “Rotational rehybridization and the high temperature phase of UC2,” Inorganic Chemistry, vol. 51, no. 23, pp. 12650–12659, 2012. View at Publisher · View at Google Scholar
  45. B. T. M. Willis, “Positions of the oxygen atoms in UO2.13,” Nature, vol. 197, no. 4869, pp. 755–756, 1963. View at Publisher · View at Google Scholar · View at Scopus
  46. A. F. Andresen, “The structure of U3O8 determined by neutron diffraction,” Acta Crystallographica, vol. 11, part 9, pp. 612–614, 1958. View at Publisher · View at Google Scholar
  47. B. Loopstra, “Neutron diffraction investigation of U3O8,” Acta Crystallographica, vol. 17, part 6, pp. 651–654, 1964. View at Publisher · View at Google Scholar
  48. D. J. M. Bevan, I. E. Grey, and B. T. M. Willis, “The crystal structure of β-U4O9-y,” Journal of Solid State Chemistry, vol. 61, no. 1, pp. 1–7, 1986. View at Scopus
  49. R. I. Cooper and B. T. M. Willis, “Refinement of the structure of β-U4O9,” Acta Crystallographica A, vol. 60, no. 4, pp. 322–325, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. B. O. Loopstra, J. C. Taylor, and A. B. Waugh, “Neutron powder profile studies of the gamma uranium trioxide phases,” Journal of Solid State Chemistry, vol. 20, no. 1, pp. 9–19, 1977. View at Scopus
  51. A. Belsky, M. Hellenbrandt, V. L. Karen, and P. Luksch, “New developments in the inorganic crystal structure database (ICSD): accessibility in support of materials research and design,” Acta Crystallographica B, vol. 58, no. 3, pp. 364–369, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. J. D. Higgs, W. T. Thompson, B. J. Lewis, and S. C. Vogel, “Kinetics of precipitation of U4O9 from hyperstoichiometric UO2+x,” Journal of Nuclear Materials, vol. 366, no. 3, pp. 297–305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. J. D. Higgs, B. J. Lewis, W. T. Thompson, and Z. He, “A conceptual model for the fuel oxidation of defective fuel,” Journal of Nuclear Materials, vol. 366, no. 1-2, pp. 99–128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Desgranges, G. Baldinozzi, G. Rousseau, J. C. Nièpce, and G. Calvarin, “Neutron diffraction study of the in situ oxidation of UO2,” Inorganic Chemistry, vol. 48, no. 16, pp. 7585–7592, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Lander and M. Mueller, “Neutron diffraction study of α-uranium at low temperatures,” Acta Crystallographica B, vol. 26, part 2, pp. 129–136, 1970. View at Publisher · View at Google Scholar
  56. A. Lawson, C. Olsen, J. Richardson, M. Mueller, and G. Lander, “Structure of α-uranium,” Acta Crystallographica B, vol. 44, pp. 89–96, 1988.
  57. D. W. Brown, M. A. M. Bourke, B. Clausen et al., “Temperature and direction dependence of internal strain and texture evolution during deformation of uranium,” Materials Science and Engineering A, vol. 512, no. 1-2, pp. 67–75, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. M. A. M. Bourke, D. C. Dunand, and E. Ustundag, “SMARTS—a spectrometer for strain measurement in engineering materials,” Applied Physics A, vol. 74, no. 1, supplement, pp. s1707–s1709, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. R. C. Birtcher, J. W. Richardson Jr., and M. H. Mueller, “Amorphization of U3Si2 by ion or neutron irradiation,” Journal of Nuclear Materials, vol. 244, no. 3, pp. 251–257, 1997. View at Scopus
  60. D. Sears, N. Wang, R. Rogge, I. Swainson, and R. Donaberger, “Neutron Diffraction Analysis of High Burnup LEU Fuel from NRU,” 2011, http://www.cins.ca/docs/exp_rep/CNBC-2011-MS-5.pdf.
  61. B. S. Seong, C. H. Lee, J. S. Lee et al., “Neutron diffraction study of U-10 wt% Mo alloy,” Journal of Nuclear Materials, vol. 277, no. 2-3, pp. 274–279, 2000. View at Publisher · View at Google Scholar · View at Scopus
  62. J. S. Lee, C. H. Lee, K. H. Kim, and V. Em, “Neutron diffraction study of U-5.4 wt% Mo alloy,” Journal of Nuclear Materials, vol. 280, no. 1, pp. 116–119, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. P. Hosemann, S. Kabra, E. Stergar, M. J. Cappillo, and S. A. Maloy, “Micro-structural characterization of laboratory heats of the Ferric/Martensitic steels HT-9 and T91,” Journal of Nuclear Materials, vol. 403, no. 1–3, pp. 7–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Hosemann, C. Vieh, R. R. Greco et al., “Nanoindentation on ion irradiated steels,” Journal of Nuclear Materials, vol. 389, no. 2, pp. 239–247, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. U. F. Kocks, C. N. Tomé, and H. R. Wenk, Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties, Cambridge University Press, New York, NY, USA, 2000.
  66. S. R. MacEwen, J. Faber Jr., and A. P. L. Turner, “The use of time-of-flight neutron diffraction to study grain interaction stresses,” Acta Metallurgica, vol. 31, no. 5, pp. 657–676, 1983. View at Scopus
  67. J. W. L. Pang, T. M. Holden, P. A. Turner, and T. E. Mason, “Intergranular stresses in Zircaloy-2 with rod texture,” Acta Materialia, vol. 47, no. 2, pp. 373–383, 1999. View at Scopus
  68. S. Cai, M. R. Daymond, R. A. Holt, M. A. Gharghouri, and E. C. Oliver, “Evolution of interphase and intergranular stresses in Zr-2.5Nb during room temperature deformation,” Materials Science and Engineering A, vol. 501, no. 1-2, pp. 166–181, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Cai, M. R. Daymond, and R. A. Holt, “Modeling the room temperature deformation of a two-phase zirconium alloy,” Acta Materialia, vol. 57, no. 2, pp. 407–419, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Cai, M. R. Daymond, A. K. Khan, R. A. Holt, and E. C. Oliver, “Elastic and plastic properties of βZr at room temperature,” Journal of Nuclear Materials, vol. 393, no. 1, pp. 67–76, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Cai, M. R. Daymond, R. A. Holt, and E. C. Oliver, “Evolution of internal strains in a two phase zirconium alloy during cyclic loading,” Acta Materialia, vol. 59, no. 13, pp. 5305–5319, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Cai, M. R. Daymond, and R. A. Holt, “Deformation of high β-phase fraction Zr-Nb alloys at room temperature,” Acta Materialia, vol. 60, no. 8, pp. 3355–3369, 2012. View at Publisher · View at Google Scholar · View at Scopus
  73. P. Rangaswamy, M. A. M. Bourke, D. W. Brown et al., “A study of twinning in zirconium using neutron diffraction and polycrystalline modeling,” Metallurgical and Materials Transactions A, vol. 33, no. 3, pp. 757–763, 2002. View at Scopus
  74. C. N. Tomé, P. J. Maudlin, R. A. Lebensohn, and G. C. Kaschner, “Mechanical response of zirconium—I. Derivation of a polycrystal constitutive law and finite element analysis,” Acta Materialia, vol. 49, no. 15, pp. 3085–3096, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. G. C. Kaschner, J. F. Bingert, C. Liu et al., “Mechanical response of zirconium—II. Experimental and finite element analysis of bent beams,” Acta Materialia, vol. 49, no. 15, pp. 3097–3108, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. T. A. Sisneros, D. W. Brown, B. Clausen et al., “Influence of strain rate on mechanical properties and deformation texture of hot-pressed and rolled beryllium,” Materials Science and Engineering A, vol. 527, no. 20, pp. 5181–5188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. H. R. Wenk, L. Lutterotti, and S. Vogel, “Texture analysis with the new HIPPO TOF diffractometer,” Nuclear Instruments and Methods in Physics Research A, vol. 515, no. 3, pp. 575–588, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. S. C. Vogel, C. Hartig, L. Lutterotti, R. B. Von Dreele, H. R. Wenk, and D. J. Williams, “Texture measurements using the new neutron diffractometer HIPPO and their analysis using the Rietveld method,” Powder Diffraction, vol. 19, no. 1, pp. 65–68, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. H. M. Reiche, S. C. Vogel, P. Mosbrucker, E. J. Larson, and M. R. Daymond, “A furnace with rotating load frame for in situ high temperature deformation and creep experiments in a neutron diffraction beam line,” Review of Scientific Instruments, vol. 83, no. 5, Article ID 053901, 7 pages, 2012. View at Publisher · View at Google Scholar
  80. H. M. Reiche and S. C. Vogel, “A versatile automated sample changer for texture measurements on the high pressure-preferred orientation neutron diffractometer,” Review of Scientific Instruments, vol. 81, no. 9, Article ID 093302, 6 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. D. Bhattacharyya, G. B. Viswanathan, S. C. Vogel, D. J. Williams, V. Venkatesh, and H. L. Fraser, “A study of the mechanism of α to β phase transformation by tracking texture evolution with temperature in Ti-6Al-4V using neutron diffraction,” Scripta Materialia, vol. 54, no. 2, pp. 231–236, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. H. R. Wenk, I. Lonardelli, and D. Williams, “Texture changes in the hcp→bcc→hcp transformation of zirconium studied in situ by neutron diffraction,” Acta Materialia, vol. 52, no. 7, pp. 1899–1907, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. M. R. Daymond, R. A. Holt, S. Cai, P. Mosbrucker, and S. C. Vogel, “Texture inheritance and variant selection through an hcp-bcc-hcp phase transformation,” Acta Materialia, vol. 58, no. 11, pp. 4053–4066, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. R. W. L. Fong, R. Miller, H. J. Saari, and S. C. Vogel, “Crystallographic texture and volume fraction of α and β phases in Zr-2.5Nb pressure tube material during heating and cooling,” Metallurgical and Materials Transactions A, vol. 43, no. 3, pp. 806–821, 2012. View at Publisher · View at Google Scholar · View at Scopus
  85. E. Garlea, H. Choo, G. Y. Wang et al., “Hydride-phase formation and its influence on fatigue crack propagation behavior in a zircaloy-4 alloy,” Metallurgical and Materials Transactions A, vol. 41, no. 11, pp. 2816–2828, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. P. J. Withers, M. Turski, L. Edwards, P. J. Bouchard, and D. J. Buttle, “Recent advances in residual stress measurement,” International Journal of Pressure Vessels and Piping, vol. 85, no. 3, pp. 118–127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. L. Edwards, P. J. Bouchard, M. Dutta et al., “Direct measurement of the residual stresses near a “boat-shaped” repair in a 20 mm thick stainless steel tube butt weld,” International Journal of Pressure Vessels and Piping, vol. 82, no. 4, pp. 288–298, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. P. J. Bouchard, D. George, J. R. Santisteban et al., “Measurement of the residual stresses in a stainless steel pipe girth weld containing long and short repairs,” International Journal of Pressure Vessels and Piping, vol. 82, no. 4, pp. 299–310, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Paddea, J. A. Francis, A. M. Paradowska, P. J. Bouchard, and I. A. Shibli, “Residual stress distributions in a P91 steel-pipe girth weld before and after post weld heat treatment,” Materials Science and Engineering A, vol. 534, pp. 663–672, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. D. G. Carr, M. I. Ripley, T. M. Holden, D. W. Brown, and S. C. Vogel, “Residual stress measurements in a zircaloy-4 weld by neutron diffraction,” Acta Materialia, vol. 52, no. 14, pp. 4083–4091, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. D. G. Carr, M. I. Ripley, D. W. Brown, S. C. Vogel, and T. M. Holden, “Residual stress measurements on a stress relieved zircaloy-4 weld by neutron diffraction,” Journal of Nuclear Materials, vol. 359, no. 3, pp. 202–207, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. D. Carr, T. Holden, M. Ripley, D. Brown, and S. Vogel, “Investigation of grain-scale stresses and modeling of tensile deformation in a zircaloy-4 weldment,” Metallurgical and Materials Transactions A, vol. 38, no. 10, pp. 2410–2418, 2007. View at Publisher · View at Google Scholar
  93. G. Ribárik, J. Gubicza, and T. Ungár, “Correlation between strength and microstructure of ball-milled Al–Mg alloys determined by X-ray diffraction,” Materials Science and Engineering A, vol. 387-389, no. 1-2, pp. 343–347, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. L. Balogh, D. W. Brown, P. Mosbrucker, F. Long, and M. R. Daymond, “Dislocation structure evolution induced by irradiation and plastic deformation in the Zr-2.5 Nb nuclear structural material determined by neutron diffraction line profile analysis,” Acta Materialia, vol. 60, no. 15, pp. 5567–5577, 2012. View at Publisher · View at Google Scholar
  95. M. R. Daymond and P. J. Bouchard, “Elastoplastic deformation of 316 stainless steel under tensile loading at elevated temperatures,” Metallurgical and Materials Transactions A, vol. 37, no. 6, pp. 1863–1873, 2006. View at Scopus
  96. B. Clausen, D. W. Brown, M. A. M. Bourke, T. A. Saleh, and S. A. Maloy, “In situ neutron diffraction and elastic-plastic self-consistent polycrystal modeling of HT-9,” Journal of Nuclear Materials, vol. 425, no. 1–3, pp. 228–232, 2012. View at Publisher · View at Google Scholar · View at Scopus
  97. N. R. Barton, A. Arsenlis, and J. Marian, “A polycrystal plasticity model of strain localization in irradiated iron,” Journal of the Mechanics and Physics of Solids, vol. 61, no. 2, pp. 341–351, 2013. View at Publisher · View at Google Scholar
  98. K. E. Sickafus, L. Minervini, R. W. Grimes et al., “Radiation tolerance of complex oxides,” Science, vol. 289, no. 5480, pp. 748–751, 2000. View at Publisher · View at Google Scholar · View at Scopus
  99. M. James, M. L. Carter, Z. Zhang et al., “Crystal chemistry and structures of (Ca,U) titanate pyrochlores,” Journal of the American Ceramic Society, vol. 93, no. 10, pp. 3464–3473, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. T. Hartmann, A. Alaniz, F. Poineau et al., “Structure studies on lanthanide technetium pyrochlores as prospective host phases to immobilize 99technetium and fission lanthanides from effluents of reprocessed used nuclear fuels,” Journal of Nuclear Materials, vol. 411, no. 1–3, pp. 60–71, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. Y. Zhang, Z. Zhang, G. Thorogood, and E. Vance, “Pyrochlore based glass-ceramics for the immobilization of actiniderich nuclear wastes: from concept to reality,” Journal of Nuclear Materials, vol. 432, no. 1–3, pp. 545–547, 2013. View at Publisher · View at Google Scholar
  102. F. Izumi and K. Momma, “Three-dimensional visualization of electron- and nuclear-density distributions in inorganic materials by MEM-based technology,” IOP Conference Series: Materials Science and Engineering, vol. 18, Article ID 022001, 2011. View at Publisher · View at Google Scholar
  103. K. Momma and F. Izumi, “Evaluation of algorithms and weighting methods for mem analysis from powder diffraction data,” ZeitschriFt für Kristallographie Proceedings, vol. 1, pp. 195–200, 2011.
  104. S. I. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, and A. Yamada, “Experimental visualization of lithium diffusion in LixFePO4,” Nature Materials, vol. 7, no. 9, pp. 707–711, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. J. Han, J. Zhu, Y. Li et al., “Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12,” Chemical Communications, vol. 48, no. 79, pp. 9840–9842, 2012. View at Publisher · View at Google Scholar
  106. N. Takenaka, H. Asano, T. Fujii, M. Mizubata, and K. Yoshii, “Application of fast neutron radiography to three-dimensional visualization of steady two-phase flow in a rod bundle,” Nuclear Instruments and Methods in Physics Research A, vol. 424, no. 1, pp. 73–76, 1999. View at Publisher · View at Google Scholar · View at Scopus
  107. R. Zboray, J. Kickhofel, M. Damsohn, and H. M. Prasser, “Cold-neutron tomography of annular flow and functional spacer performance in a model of a boiling water reactor fuel rod bundle,” Nuclear Engineering and Design, vol. 241, no. 8, pp. 3201–3215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. A. S. Tremsin, J. B. McPhate, J. V. Vallerga et al., “Detection efficiency, spatial and timing resolution of thermal and cold neutron counting MCP detectors,” Nuclear Instruments and Methods in Physics Research A, vol. 604, no. 1-2, pp. 140–143, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. W. E. Lamb Jr., “Capture of neutrons by atoms in a crystal,” Physical Review, vol. 55, no. 2, pp. 190–197, 1939. View at Publisher · View at Google Scholar · View at Scopus
  110. R. A. Schrack, J. W. Behrens, R. Johnson, and C. D. Bowman, “Resonance Neutron Radiography using an electron linac,” IEEE Transactions on Nuclear Science, vol. NS-28, no. 2, pp. 1640–1164, 1980. View at Scopus
  111. G. Chen and R. C. Lanza, “Fast neutron resonance radiography for elemental imaging: theory and applications,” IEEE Transactions on Nuclear Science, vol. 49, no. 4, pp. 1919–1924, 2002. View at Publisher · View at Google Scholar · View at Scopus
  112. H. Postma and P. Schillebeeckx, “Non-destructive analysis of objects using neutron resonance capture,” Journal of Radioanalytical and Nuclear Chemistry, vol. 265, no. 2, pp. 297–302, 2005. View at Publisher · View at Google Scholar · View at Scopus
  113. H. Postma and P. Schillebeeckx, “Neutron resonance capture and transmission analysis,” in Encyclopedia of Analytical Chemistry, 2009. View at Publisher · View at Google Scholar
  114. D. L. Chichester and J. W. Sterbentz, “Neutron resonance transmission analysis (NRTA): initial studies of a method for assaying plutonium in spent fuel,” Tech. Rep., Idaho National Laboratory (INL), 2011.
  115. D. L. Chichester and J. W. Sterbentz, A Second Look at Neutron Resonance Transmission Analysis as a Spent Fuel NDA, 2011.
  116. C. L. Morris, M. Bourke, D. D. Byler et al., “Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets,” Review of Scientific Instruments, vol. 84, no. 2, Article ID 023902, 2013. View at Publisher · View at Google Scholar
  117. A. Tremsin, S. Vogel, M. Mocko et al., “Non-destructive studies of fuel rodlets by neutron resonance absorption radiography and thermal neutron radiography,” Journal of Nuclear Materials, 2013. View at Publisher · View at Google Scholar
  118. M. B. Aufderheide III, H. S. Park, E. P. Hartouni et al., “Proton radiography as a means of material characterization,” AIP Conference Proceedings, vol. 497, pp. 706–712, 1999. View at Publisher · View at Google Scholar
  119. G. Burca, J. A. James, W. Kockelmann et al., “A new bridge technique for neutron tomography and diffraction measurements,” Nuclear Instruments and Methods in Physics Research A, vol. 651, no. 1, pp. 229–235, 2011. View at Publisher · View at Google Scholar · View at Scopus
  120. W. Kockelmann, L. C. Chapon, and P. G. Radaelli, “Neutron texture analysis on GEM at ISIS,” Physica B, vol. 385-386, pp. 639–643, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. A. Huq, J. P. Hodges, O. Gourdon, and L. Heroux, “Powgen: a third-generation highresolution high-throughput powder diffraction instrument at the spallation neutron source,” Zeitschrift für Kristallographie Proceedings, vol. 1, pp. 127–135, 2011. View at Publisher · View at Google Scholar
  122. T. Ishigaki, A. Hoshikawa, M. Yonemura et al., “IBARAKI materials design diffractometer (iMATERIA)—versatile neutron diffractometer at J-PARC,” Nuclear Instruments and Methods in Physics Research A, vol. 600, no. 1, pp. 189–191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. J. R. Santisteban, M. R. Daymond, J. A. James, and L. Edwards, “ENGIN-X: a third-generation neutron strain scanner,” Journal of Applied Crystallography, vol. 39, no. 6, pp. 812–825, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. X. L. Wang, T. M. Holden, G. Q. Rennich et al., “VULCAN—the engineering diffractometer at the SNS,” Physica B, vol. 385-386, pp. 673–675, 2006. View at Publisher · View at Google Scholar · View at Scopus
  125. S. Harjo, T. Ito, K. Aizawa et al., “Current status of engineering materials diffractometer at J-PARC,” Materials Science Forum, vol. 681, pp. 443–448, 2011. View at Publisher · View at Google Scholar · View at Scopus
  126. O. Kirstein, V. Luzin, A. Brule, H. Nguyen, and D. Tawfik, “Kowari—OPAL's residual-stress diffractometer and its application to materials science and engineering,” Advanced Materials Research, vol. 41-42, pp. 439–444, 2008. View at Scopus
  127. B. C. Larson, W. Yang, G. E. Ice, J. D. Budai, and J. Z. Tischler, “Three-dimensional X-ray structural microscopy with submicrometre resolution,” Nature, vol. 415, no. 6874, pp. 887–890, 2002. View at Publisher · View at Google Scholar · View at Scopus
  128. J. D. Budai, W. Yang, N. Tamura et al., “X-ray microdiffraction study of growth modes and crystallographic tilts in oxide films on metal substrates,” Nature Materials, vol. 2, no. 7, pp. 487–492, 2003. View at Publisher · View at Google Scholar · View at Scopus
  129. G. E. Ice, B. C. Larson, W. Yang et al., “Polychromatic X-ray microdiffraction studies of mesoscale structure and dynamics,” Journal of Synchrotron Radiation, vol. 12, no. 2, pp. 155–162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  130. J. Mayers, G. Baciocco, and A. C. Hannon, “Temperature measurement by neutron resonance radiography,” Nuclear Instruments and Methods in Physics Research A, vol. 275, no. 2, pp. 453–459, 1989. View at Scopus
  131. J. C. Frost, P. Meehan, S. R. Morris, R. C. Ward, and J. Mayers, “Non-intrusive temperature measurement of the components of a working catalyst by neutron resonance radiography,” Catalysis Letters, vol. 2, no. 2, pp. 97–104, 1989. View at Publisher · View at Google Scholar · View at Scopus
  132. Y. Le Godec, M. T. Dove, D. J. Francis et al., “Neutron diffraction at simultaneous high temperatures and pressures, with measurement of temperature by neutron radiography,” Mineralogical Magazine, vol. 65, no. 6, pp. 737–748, 2001. View at Publisher · View at Google Scholar · View at Scopus
  133. H. J. Stone, M. G. Tucker, F. M. Meducin et al., “Temperature measurement in a Paris-Edinburgh cell by neutron resonance spectroscopy,” Journal of Applied Physics, vol. 98, no. 6, Article ID 064905, 10 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  134. H. J. Stone, M. G. Tucker, Y. Le Godec et al., “Remote determination of sample temperature by neutron resonance spectroscopy,” Nuclear Instruments and Methods in Physics Research A, vol. 547, no. 2-3, pp. 601–615, 2005. View at Publisher · View at Google Scholar · View at Scopus
  135. V. W. Yuan, J. D. Bowman, D. J. Funk et al., “Shock temperature measurement using neutron resonance spectroscopy,” Physical Review Letters, vol. 94, no. 12, Article ID 125504, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  136. D. C. Swift, A. Seifter, D. B. Holtkamp, V. W. Yuan, D. Bowman, and D. A. Clark, “Explanation of anomalous shock temperatures in shock-loaded Mo samples measured using neutron resonance spectroscopy,” Physical Review B, vol. 77, no. 9, Article ID 092102, 4 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  137. H. Sato, T. Kamiyama, and Y. Kiyanagi, “Pulsed neutron imaging using resonance transmission spectroscopy,” Nuclear Instruments and Methods in Physics Research A, vol. 605, no. 1-2, pp. 36–39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. M. Gu, H. Fang, B. Liu et al., “Indicator to estimate temperature sensitivity of resonance in temperature measurement by neutron resonance spectroscopy,” Nuclear Instruments and Methods in Physics Research B, vol. 269, no. 5, pp. 528–538, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. H. Sato, T. Kamiyama, Y. Kiyanagi, and S. Ikeda, “Simulation for neutron resonance absorption spectroscopic tomography,” Nuclear Instruments and Methods in Physics Research A, vol. 600, no. 1, pp. 135–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. T. Kamiyama, H. Sato, N. Miyamoto, H. Iwasa, Y. Kiyanagi, and S. Ikeda, “Energy sliced neutron tomography using neutron resonance absorption spectrometer,” Nuclear Instruments and Methods in Physics Research A, vol. 600, no. 1, pp. 107–110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. A. S. Tremsin, J. B. McPhate, J. V. Vallerga et al., “High resolution neutron resonance absorption imaging at a pulsed neutron beamline,” in Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC '11), pp. 1501–1505, IEEE, October 2011. View at Publisher · View at Google Scholar · View at Scopus
  142. A. Tremsin, J. McPhate, J. Vallerga et al., “Spatially resolved remote measurement of temperature by neutron resonance absorption,” in Proceedings of the IEEE Nuclear Science Symposium, IEEE, Los Angeles, Calif, USA, October 2012.
  143. E. M. Schooneveld, M. Tardocchi, G. Gorini et al., “A new position-sensitive transmission detector for epithermal neutron imaging,” Journal of Physics D, vol. 42, no. 15, Article ID 152003, 2009. View at Publisher · View at Google Scholar · View at Scopus
  144. X. Llopart, R. Ballabriga, M. Campbell, L. Tlustos, and W. Wong, “Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements,” Nuclear Instruments and Methods in Physics Research A, vol. 581, no. 1-2, pp. 485–494, 2007. View at Publisher · View at Google Scholar · View at Scopus
  145. A. S. Tremsin, W. B. Feller, and R. G. Downing, “Efficiency optimization of microchannel plate (MCP) neutron imaging detectors. I. Square channels with 10B doping,” Nuclear Instruments and Methods in Physics Research A, vol. 539, no. 1-2, pp. 278–311, 2005. View at Publisher · View at Google Scholar · View at Scopus
  146. A. S. Tremsin, J. B. McPhate, J. V. Vallerga et al., “Improved efficiency of high resolution thermal and cold neutron imaging,” Nuclear Instruments and Methods in Physics Research A, vol. 628, no. 1, pp. 415–418, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. K. Meggers, H. G. Priesmeyer, M. Stalder, S. Vogel, and W. Trela, “Single-shot neutron transmission diffraction,” Physica B, vol. 234–236, pp. 1160–1162, 1997. View at Scopus
  148. S. Vogel, A Rietveld-Approach for the Analysis of Neutron Time-of-Flight Transmission Data, Mathematisch-Naturwissenschaftliche Fakultät, University of Kiel, Kiel, Germany, 2000.
  149. J. R. Santisteban, L. Edwards, M. E. Fizpatrick, A. Steuwer, and P. J. Withers, “Engineering applications of Bragg-edge neutron transmission,” Applied Physics A, vol. 74, no. 1, supplement, pp. s1433–s1436, 2002. View at Publisher · View at Google Scholar · View at Scopus
  150. J. R. Santisteban, L. Edwards, H. G. Priesmeyer, and S. Vogel, “Comparison of Bragg-edge neutron-transmission spectroscopy at ISIS and LANSCE,” Applied Physics A, vol. 74, no. 1, supplement, pp. s1616–s1618, 2002. View at Publisher · View at Google Scholar · View at Scopus
  151. J. Huang, S. C. Vogel, W. J. Poole, M. Militzer, and P. Jacques, “The study of low-temperature austenite decomposition in a Fe–C–Mn–Si steel using the neutron Bragg edge transmission technique,” Acta Materialia, vol. 55, no. 8, pp. 2683–2693, 2007. View at Publisher · View at Google Scholar · View at Scopus
  152. H. Sato, T. Kamiyama, and Y. Kiyanagi, “A Rietveld-type analysis code for pulsed neutron Bragg-edge transmission imaging and quantitative evaluation of texture and microstructure of a welded α-iron plate,” Materials Transactions, vol. 52, no. 6, pp. 1294–1302, 2011. View at Publisher · View at Google Scholar · View at Scopus
  153. A. S. Tremsin, J. B. McPhate, J. V. Vallerga et al., “Transmission Bragg edge spectroscopy measurements at ORNL spallation neutron source,” Journal of Physics: Conference Series, vol. 251, no. 1, Article ID 012069, 2010. View at Publisher · View at Google Scholar · View at Scopus
  154. A. S. Tremsin, J. B. McPhate, W. Kockelmann, J. V. Vallerga, O. H. W. Siegmund, and W. B. Feller, “High resolution Bragg edge transmission spectroscopy at pulsed neutron sources: proof of principle experiments with a neutron counting MCP detector,” Nuclear Instruments and Methods in Physics Research A, vol. 633, supplement 1, pp. S235–S238, 2011. View at Publisher · View at Google Scholar · View at Scopus
  155. A. S. Tremsin, J. B. Mcphate, A. Steuwer et al., “High-resolution strain mapping through time-of-flight neutron transmission diffraction with a microchannel plate neutron counting detector,” Strain, vol. 48, no. 4, pp. 296–305, 2012. View at Publisher · View at Google Scholar · View at Scopus
  156. S. Vogel, E. Ustundag, J. C. Hanan, V. W. Yuan, and M. A. M. Bourke, “In-situ investigation of the reduction of NiO by a neutron transmission method,” Materials Science and Engineering A, vol. 333, no. 1-2, pp. 1–9, 2002. View at Publisher · View at Google Scholar · View at Scopus
  157. A. Steuwer, P. J. Withers, J. R. Santisteban, and L. Edwards, “Using pulsed neutron transmission for crystalline phase imaging and analysis,” Journal of Applied Physics, vol. 97, no. 7, Article ID 074903, 2005. View at Publisher · View at Google Scholar · View at Scopus
  158. E. H. Lehmann, P. Vontobel, and A. Hermann, “Non-destructive analysis of nuclear fuel by means of thermal and cold neutrons,” Nuclear Instruments and Methods in Physics Research A, vol. 515, no. 3, pp. 745–759, 2003. View at Publisher · View at Google Scholar · View at Scopus
  159. F. Groeschel, P. Schleuniger, A. Hermann, E. Lehmann, and L. Wiezel, “Neutron radiography of irradiated fuel rod segments at the SINQ: loading, transfer and irradiation concept,” Nuclear Instruments and Methods in Physics Research A, vol. 424, no. 1, pp. 215–220, 1999. View at Publisher · View at Google Scholar · View at Scopus
  160. E. Lehmann, P. Vontobel, and M. Estermann, “Study of material changes of SINQ target rods after long-term exposure by neutron radiography methods,” Applied Radiation and Isotopes, vol. 61, no. 4, pp. 603–607, 2004. View at Publisher · View at Google Scholar · View at Scopus
  161. P. Vontobel, M. Tamaki, N. Mori et al., “Post-irradiation analysis of SINQ target rods by thermal neutron radiography,” Journal of Nuclear Materials, vol. 356, no. 1–3, pp. 162–167, 2006. View at Publisher · View at Google Scholar · View at Scopus
  162. M. Grosse, M. Steinbrueck, E. Lehmann, and P. Vontobel, “Kinetics of hydrogen absorption and release in zirconium alloys during steam oxidation,” Oxidation of Metals, vol. 70, no. 3-4, pp. 149–162, 2008. View at Publisher · View at Google Scholar · View at Scopus
  163. E. H. Lehmann, P. Vontobel, and N. Kardjilov, “Hydrogen distribution measurements by neutrons,” Applied Radiation and Isotopes, vol. 61, no. 4, pp. 503–509, 2004. View at Publisher · View at Google Scholar · View at Scopus
  164. R. Yasuda, M. Nakata, M. Matsubayashi, K. Harada, Y. Hatakeyama, and H. Amano, “Application of hydrogen analysis by neutron imaging plate method to zircaloy cladding tubes,” Journal of Nuclear Materials, vol. 320, no. 3, pp. 223–230, 2003. View at Publisher · View at Google Scholar · View at Scopus
  165. E. Sváb, G. Mészáros, Z. Somogyvári, M. Balaskó, and F. Körösi, “Neutron imaging of Zr-1% Nb fuel cladding material containing hydrogen,” Applied Radiation and Isotopes, vol. 61, no. 4, pp. 471–477, 2004.
  166. A. Shaikh, P. Vaidya, B. Shah, S. Gangotra, and K. Sahoo, “Application of neutron radiography and neutron diffraction techniques in study of zirconium hydride blisters in zirconium based pressure tube materials,” BARC Newsletter, vol. 273, p. 104, 2006.
  167. M. Grosse, G. Kuehne, M. Steinbrueck, E. Lehmann, J. Stuckert, and P. Vontobel, “Quantification of hydrogen uptake of steam-oxidized zirconium alloys by means of neutron radiography,” Journal of Physics Condensed Matter, vol. 20, no. 10, Article ID 104263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  168. M. Grosse, M. Steinbrueck, and A. Kaestner, “Wavelength dependent neutron transmission and radiography investigations of the high temperature behaviour of materials applied in nuclear fuel and control rod claddings,” Nuclear Instruments and Methods in Physics Research A, vol. 651, no. 1, pp. 315–319, 2011. View at Publisher · View at Google Scholar · View at Scopus
  169. M. Große, M. Steinbrück, J. Stuckert, A. Kastner, and B. Schillinger, “Application of neutron radiography to study material processes during hypothetical severe accidents in nuclear reactors,” Journal of Materials Science, vol. 47, no. 18, pp. 6505–6512, 2012. View at Publisher · View at Google Scholar · View at Scopus
  170. J. R. Granada, J. R. Santisteban, and R. E. Mayer, “Non-destructive determination of very low hydrogen content in metals with the use of neutron techniques,” Physica B, vol. 213-214, pp. 1005–1007, 1995. View at Publisher · View at Google Scholar · View at Scopus
  171. L. Bennun, J. Santisteban, J. Díaz-Valdés, J. R. Granada, and R. E. Mayer, “A neutronic method to determine low hydrogen concentrations in metals,” Nuclear Instruments and Methods in Physics Research B, vol. 263, no. 2, pp. 468–472, 2007. View at Publisher · View at Google Scholar · View at Scopus
  172. Y. N. Choi, H. S. Oh, V. T. Em, V. A. Somenkov, C. H. Lee, and S. D. Park, “Measurement of very small hydrogen content in zirconium alloys by measuring thermal neutron incoherent scattering,” Applied Physics A, vol. 74, no. 1, supplement, pp. s1710–s1712, 2002. View at Publisher · View at Google Scholar · View at Scopus
  173. A. Couet, A. T. Motta, R. J. Comstock, and R. L. Paul, “Cold neutron prompt gamma activation analysis, a non-destructive technique for hydrogen level assessment in zirconium alloys,” Journal of Nuclear Materials, vol. 425, no. 1–3, pp. 211–217, 2012. View at Publisher · View at Google Scholar · View at Scopus
  174. J. R. Santisteban, M. A. Vicente-Alvarez, P. Vizcaino et al., “Texture imaging of zirconium based components by total neutron cross-section experiments,” Journal of Nuclear Materials, vol. 425, no. 1–3, pp. 218–227, 2012. View at Publisher · View at Google Scholar · View at Scopus
  175. M. Strobl, “Future prospects of imaging at spallation neutron sources,” Nuclear Instruments and Methods in Physics Research A, vol. 604, no. 3, pp. 646–652, 2009. View at Publisher · View at Google Scholar · View at Scopus
  176. G. E. Ice, C. R. Hubbard, B. C. Larson et al., “Kirkpatrick-Baez microfocusing optics for thermal neutrons,” Nuclear Instruments and Methods in Physics Research A, vol. 539, no. 1-2, pp. 312–320, 2005. View at Publisher · View at Google Scholar · View at Scopus
  177. G. E. Ice, C. R. Hubbard, B. C. Larson et al., “High-performance Kirkpatrick-Baez supermirrors for neutron milli- and micro-beams,” Materials Science and Engineering A, vol. 437, no. 1, pp. 120–125, 2006. View at Publisher · View at Google Scholar · View at Scopus
  178. S. J. Kisner, E. Haneda, C. A. Bouman, S. Skatter, M. Kourinny, and S. Bedford, “Limited view angle iterative CT reconstruction,” in 10th Computational Imaging, vol. 8296 of Proceedings of SPIE, p. 7, Burlingame, Calif, USA, January 2012. View at Publisher · View at Google Scholar · View at Scopus
  179. R. Zhang, A. Chang, J. B. Thibault, K. Sauer, and C. Bouman, “Statistical modeling challenges in model-based reconstruction for x-ray CT,” in 11th Computational Imaging, vol. 8657 of Proceedings of SPIE, Burlingame, Calif, USA, February 2013. View at Publisher · View at Google Scholar
  180. J. Wang, K. Sauer, J. B. Thibault, Z. Yu, and C. Bouman, “Prediction coefficient estimation in markov random fields for iterative x-ray ct reconstruction,” in Medical Imaging 2012: Image Processing, vol. 8314 of Proceedings of SPIE, p. 831444, San Diego, Calif, USA, February 2012. View at Publisher · View at Google Scholar
  181. G. Chaboussant, S. Désert, and A. Brûlet, “Recent developments and projects in SANS instrumentation at LLB-Orphée,” The European Physical Journal Special Topics, vol. 213, no. 1, pp. 313–325, 2012. View at Publisher · View at Google Scholar
  182. M. H. Mathon, Y. de Carlan, G. Geoffroy, X. Averty, A. Alamo, and C. H. De Novion, “A SANS investigation of the irradiation-enhanced α-α′ phases separation in 7–12 Cr martensitic steels,” Journal of Nuclear Materials, vol. 312, no. 2-3, pp. 236–248, 2003. View at Publisher · View at Google Scholar · View at Scopus
  183. M. J. Alinger, G. R. Odette, and D. T. Hoelzer, “The development and stability of Y–Ti–O nanoclusters in mechanically alloyed Fe–Cr based ferritic alloys,” Journal of Nuclear Materials, vol. 329–333, pp. 382–386, 2004. View at Publisher · View at Google Scholar · View at Scopus
  184. P. J. Bouchard, P. J. Withers, S. A. McDonald, and R. K. Heenan, “Quantification of creep cavitation damage around a crack in a stainless steel pressure vessel,” Acta Materialia, vol. 52, no. 1, pp. 23–34, 2004. View at Publisher · View at Google Scholar · View at Scopus
  185. O. Anderoglu, J. Van den Bosch, P. Hosemann et al., “Phase stability of an HT-9 duct irradiated in FFTF,” Journal of Nuclear Materials, vol. 430, no. 1–3, pp. 194–204, 2012. View at Publisher · View at Google Scholar
  186. P. Seeger, R. Hjelm Jr., and M. Nutter, “The low-Q diffractometer at the Los Alamos neutron scattering center,” Molecular Crystals and Liquid Crystals, vol. 180, pp. 101–117, 1990.
  187. C. D. Bowman, D. C. Bowman, T. Hill et al., “Measurements of thermal neutron diffraction and inelastic scattering in reactor-grade graphite,” Nuclear Science and Engineering, vol. 159, no. 2, pp. 182–198, 2008. View at Scopus
  188. J. E. Lynn, G. H. Kwei, W. J. Trela et al., “Vibrational properties of Pu and Ga in a Pu–Ga alloy from neutron-resonance Doppler spectroscopy,” Physical Review B, vol. 58, no. 17, pp. 11408–11415, 1998. View at Scopus
  189. N. J. Lane, S. C. Vogel, G. Hug et al., “Neutron diffraction measurements and first-principles study of thermal motion of atoms in select Mn+1AXn and binary MX transition-metal carbide phases,” Physical Review B, vol. 86, no. 21, Article ID 214301, 9 pages, 2012. View at Publisher · View at Google Scholar
  190. K. Clausen, W. Hayes, J. E. MacDonald, R. Osborn, and M. T. Hutchings, “Observation of oxygen Frenkel disorder in uranium dioxide above 2000 K by use of neutron-scattering techniques,” Physical Review Letters, vol. 52, no. 14, pp. 1238–1241, 1984. View at Publisher · View at Google Scholar · View at Scopus
  191. K. N. Clausen, M. A. Hackett, W. Hayes et al., “Coherent diffuse neutron scattering from UO2 and ThO2 at temperatures above 2000 K,” Physica B, vol. 156-157, pp. 103–106, 1989. View at Scopus
  192. J. P. Goff, B. Fåk, W. Hayes, and M. T. Hutchings, “Defect structure and oxygen diffusion in UO2+δ,” Journal of Nuclear Materials, vol. 188, pp. 210–215, 1992. View at Scopus
  193. K. Clausen, W. Hayes, M. Hutchings, J. Macdonald, R. Osborn, and P. Schnabel, “Investigation of oxygen disorder, thermal parameters, lattice vibrations and elastic constants of UO2 and ThO2 at temperatures up to 2 930 K,” Revue de Physique Appliquée, vol. 19, pp. 719–722, 1984.
  194. M. T. Hutchings, “High-temperature studies of UO2 and ThO2 using neutron scattering techniques,” Journal of the Chemical Society, Faraday Transactions 2, vol. 83, no. 7, pp. 1083–1103, 1987. View at Publisher · View at Google Scholar · View at Scopus
  195. T. Proffen, S. J. L. Billinge, T. Egami, and D. Louca, “Structural analysis of complex materials using the atomic pair distribution function—a practical guide,” Zeitschrift für Kristallographie, vol. 218, no. 2, pp. 132–143, 2003. View at Publisher · View at Google Scholar · View at Scopus
  196. A. C. Wright, B. Bachra, T. M. Brunier, R. N. Sinclair, L. F. Gladden, and R. L. Portsmouth, “A neutron diffraction and MAS-NMR study of the structure of fast neutron irradiated vitreous silica,” Journal of Non-Crystalline Solids, vol. 150, no. 1–3, pp. 69–75, 1992. View at Scopus
  197. F. Garrido, A. C. Hannon, R. M. Ibberson, L. Nowicki, and B. T. M. Willis, “Neutron diffraction studies of U4O9: comparison with EXAFS results,” Inorganic Chemistry, vol. 45, no. 20, pp. 8408–8413, 2006. View at Publisher · View at Google Scholar · View at Scopus
  198. S. D. Conradson, D. Manara, F. Wastin et al., “Local structure and charge distribution in the UO2-U4O9 system,” Inorganic Chemistry, vol. 43, no. 22, pp. 6922–6935, 2004. View at Publisher · View at Google Scholar · View at Scopus
  199. L. Desgranges, G. Baldinozzi, D. Siméone, and H. E. Fischer, “Refinement of the α-U4O9 crystalline structure: new insight into the U4O9→U3O8 transformation,” Inorganic Chemistry, vol. 50, no. 13, pp. 6146–6151, 2011. View at Publisher · View at Google Scholar · View at Scopus
  200. G. Dolling, R. Cowley, and A. Woods, “The crystal dynamics of uranium dioxide,” Canadian Journal of Physics, vol. 43, no. 8, pp. 1397–1413, 1965. View at Publisher · View at Google Scholar
  201. R. J. McQueeney, A. C. Lawson, A. Migliori et al., “Unusual phonon softening in δ-phase plutonium,” Physical Review Letters, vol. 92, no. 14, Article ID 146401, 4 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  202. M. Dubey, M. S. Jablin, P. Wang, M. Mocko, and J. Majewski, “SPEAR-ToF neutron reflectometer at the Los Alamos neutron science center,” European Physical Journal Plus, vol. 126, no. 11, pp. 1–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  203. H. He, P. Wang, D. Allred, J. Majewski, M. Wilkerson, and K. D. Rector, “Characterization of chemical speciation in ultrathin uranium oxide layered films,” Analytical Chemistry, vol. 84, no. 23, pp. 10380–10387, 2012. View at Publisher · View at Google Scholar
  204. A. C. Larson and R. B. Von Dreele, “General structure analysis system (GSAS),” Tech. Rep. LA-UR 86-748, Los Alamos National Laboratory (LANL), 2004.
  205. S. C. Vogel, “Gsaslanguage: a GSAS script language for automated Rietveld refinements of diffraction data,” Journal of Applied Crystallography, vol. 44, no. 4, pp. 873–877, 2011. View at Publisher · View at Google Scholar · View at Scopus
  206. K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” Journal of Applied Crystallography, vol. 44, no. 6, pp. 1272–1276, 2011. View at Publisher · View at Google Scholar · View at Scopus
  207. H. M. Reiche, Advanced sample environments for in situ neutron diffraction studies of nuclear materials [Ph.D. thesis], New Mexico State University, Las Cruces, NM, USA, 2012.
  208. S. Matthies, J. Pehl, H. R. Wenk, L. Lutterotti, and S. C. Vogel, “Quantitative texture analysis with the HIPPO neutron TOF diffractometer,” Journal of Applied Crystallography, vol. 38, no. 3, pp. 462–475, 2005. View at Publisher · View at Google Scholar · View at Scopus
  209. H. R. Wenk, L. Lutterotti, and S. C. Vogel, “Rietveld texture analysis from TOF neutron diffraction data,” Powder Diffraction, vol. 25, no. 3, Article ID 008003PDJ, pp. 283–296, 2010. View at Publisher · View at Google Scholar · View at Scopus
  210. A. Kahle, B. Winkler, B. Hennion, and P. Boutrouille, “High-temperature furnace for dynamic neutron radiography,” Review of Scientific Instruments, vol. 74, no. 8, pp. 3717–3721, 2003. View at Publisher · View at Google Scholar · View at Scopus
  211. A. Kahle, B. Winkler, and B. Hennion, “Is Faxén's correction function applicable to viscosity measurements of silicate melts with the falling sphere method?” Journal of Non-Newtonian Fluid Mechanics, vol. 112, no. 2-3, pp. 203–215, 2003. View at Publisher · View at Google Scholar · View at Scopus
  212. B. Winkler, A. Kahle, and B. Hennion, “Neutron radiography of rocks and melts,” Physica B, vol. 385-386, pp. 933–934, 2006. View at Publisher · View at Google Scholar · View at Scopus
  213. C. W. Barnes, M. Bourke, S. Malloy et al., “Radiation damage from atomic to meso-scales in extreme environments,” Bulletin of the American Physical Society, vol. 55, 2010.
  214. “Experimental Physical Sciences VISTA: MaRIE,” 2010, http://www.lanl.gov/orgs/adeps/VISTAS/docs/FINAL-LALP-10-059-reduced.pdf.
  215. “Matter-Radiation Interactions in Extremes (MaRIE), Los Alamos Lab,” 2012, http://marie.lanl.gov/.