About this Journal Submit a Manuscript Table of Contents
ISRN Materials Science
Volume 2013 (2013), Article ID 408596, 9 pages
http://dx.doi.org/10.1155/2013/408596
Research Article

On the Failure and Fracture of Polymer Foam Containing Discontinuities

Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA

Received 19 June 2013; Accepted 4 August 2013

Academic Editors: Y. Hiraoka and K. Hokamoto

Copyright © 2013 Addis Kidane. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. E. Kabir, M. C. Saha, and S. Jeelani, “Tensile and fracture behavior of polymer foams,” Materials Science and Engineering A, vol. 429, no. 1-2, pp. 225–235, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Wang, N. Gardner, and A. Shukla, “The blast resistance of sandwich composites with stepwise graded cores,” International Journal of Solids and Structures, vol. 46, no. 18-19, pp. 3492–3502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge University, Oxford, UK, 2nd edition, 1997.
  4. A. McIntyre and G. E. Anderton, “Fracture properties of a rigid polyurethane foam over a range of densities,” Polymer, vol. 20, no. 2, pp. 247–253, 1979. View at Scopus
  5. C. W. Fowlkes, “Fracture toughness tests of a rigid polyurethane foam,” International Journal of Fracture, vol. 10, no. 1, pp. 99–108, 1974. View at Publisher · View at Google Scholar · View at Scopus
  6. M. E. Kabir, M. C. Saha, and S. Jeelani, “Tensile and fracture behavior of polymer foams,” Materials Science and Engineering A, vol. 429, no. 1-2, pp. 225–235, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. El-Hadek and H. V. Tippur, “Dynamic fracture behavior of syntactic epoxy foams: optical measurements using coherent gradient sensing,” Optics and Lasers in Engineering, vol. 40, no. 4, pp. 353–369, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. F. W. Noble and J. Lilley, “Fatigue crack growth in polyurethane foam,” Journal of Materials Science, vol. 16, no. 7, pp. 1801–1808, 1981. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Cotgreave and J. B. Shortall, “The fracture toughness of reinforced polyurethane foam,” Journal of Materials Science, vol. 13, no. 4, pp. 722–730, 1978. View at Publisher · View at Google Scholar · View at Scopus
  10. T. C. Cotgreave and J. B. Shortall, “The mechanism of reinforcement of polyurethane foam by high-modulus chopped fibres,” Journal of Materials Science, vol. 12, no. 4, pp. 708–717, 1977. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Fusheng and Z. Zhengang, “The mechanical behavior of foamed aluminum,” Journal of Materials Science, vol. 34, no. 2, pp. 291–299, 1999. View at Scopus
  12. E. Amsterdam, P. R. Onck, and J. T. M. de Hosson, “Fracture and microstructure of open cell aluminum foam,” Journal of Materials Science, vol. 40, no. 22, pp. 5813–5819, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. B. John, C. P. R. Nair, K. A. Devi, and K. N. Ninan, “Effect of low-density filler on mechanical properties of syntactic foams of cyanate ester,” Journal of Materials Science, vol. 42, no. 14, pp. 5398–5405, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Woldesenbet, N. Gupta, and A. Jadhav, “Effects of density and strain rate on properties of syntactic foams,” Journal of Materials Science, vol. 40, no. 15, pp. 4009–4017, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Liu and F. H. Samuel, “Effect of inclusions on the tensile properties of Al-7% Si-0.35% Mg (A356.2) aluminium casting alloy,” Journal of Materials Science, vol. 33, no. 9, pp. 2269–2281, 1998. View at Scopus
  16. L. Marsavina, E. Linul, T. Voiconi, and T. Sadowski, “A comparison between dynamic and static fracture toughness of polyurethane foams,” Polymer Testing, vol. 32, pp. 673–680, 2013.
  17. V. Rizov, “Characterization of low-velocity impact fracture behavior of rigid foam by single edge notched bend specimens,” Solids and Structures, vol. 2, no. 1, pp. 1–8, 2013.
  18. E. W. Andrews and L. J. Gibson, “The influence of cracks, notches and holes on the tensile strength of cellular solids,” Acta Materialia, vol. 49, no. 15, pp. 2975–2979, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. E. W. Andrews and L. J. Gibson, “The influence of crack-like defects on the tensile strength of an open-cell aluminum foam,” Scripta Materialia, vol. 44, no. 7, pp. 1005–1010, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Paul, T. Seshacharyulu, and U. Ramamurty, “Tensile strength of a closed-cell Al foam in the presence of notches and holes,” Scripta Materialia, vol. 40, no. 7, pp. 809–814, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. N. A. Fleck, O. B. Olurin, C. Chen, and M. F. Ashby, “The effect of hole size upon the strength of metallic and polymeric foams,” Journal of the Mechanics and Physics of Solids, vol. 49, no. 9, pp. 2015–2030, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. K. R. Mangipudi and P. R. Onck, “Notch sensitivity of ductile metallic foams: a computational study,” Acta Materialia, vol. 59, no. 19, pp. 7356–7367, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. J. W. Dally and R. J. Sanford, “Strain-gage methods for measuring the opening-mode stress-intensity factor, KI,” Experimental Mechanics, vol. 27, no. 4, pp. 381–388, 1987. View at Publisher · View at Google Scholar · View at Scopus
  24. J. R. Berger and J. W. Dally, “An overdeterministic approach for measuring KI using strain gages,” Experimental Mechanics, vol. 28, no. 2, pp. 142–145, 1988. View at Publisher · View at Google Scholar · View at Scopus
  25. T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, Taylor and Francis Group, 3rd edition, 2005.
  26. L. Rubio, J. Fernández-Sáez, and C. Navarro, “Determination of dynamic fracture-initiation toughness using three-point bending tests in a modified hopkinson pressure bar,” Experimental Mechanics, vol. 43, no. 4, pp. 379–386, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Kidane and A. Shukla, “Quasi-static and dynamic fracture initiation toughness of Ti/TiB layered functionally graded material under thermo-mechanical loading,” Engineering Fracture Mechanics, vol. 77, no. 3, pp. 479–491, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Wang, K. Labibes, Z. Azari, and G. Pluvinage, “Generalization of split Hopkinson bar technique to use viscoelastic bars,” International Journal of Impact Engineering, vol. 15, no. 5, pp. 669–686, 1994. View at Scopus
  29. H. Zhao, G. Gary, and J. R. Klepaczko, “On the use of a viscoelastic split Hopkinson pressure bar,” International Journal of Impact Engineering, vol. 19, no. 4, pp. 319–330, 1997. View at Scopus
  30. A. Sharma and A. Shukla, “Mechanical characterization of soft materials using high speed photography and split hopkinson pressure bar technique,” Journal of Materials Science, vol. 37, no. 5, pp. 1005–1017, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. D. T. Casem, W. Fourney, and P. Chang, “Wave separation in viscoelastic pressure bars using single-point measurements of strain and velocity,” Polymer Testing, vol. 22, no. 2, pp. 155–164, 2003. View at Publisher · View at Google Scholar · View at Scopus