About this Journal Submit a Manuscript Table of Contents
ISRN Materials Science
Volume 2013 (2013), Article ID 648246, 7 pages
http://dx.doi.org/10.1155/2013/648246
Research Article

A New Approach in Modifying Polymeric Coatings to Increase Corrosion Resistance Properties

1University of Windsor, 401 Sunset Avenue, Windsor, ON, Canada N9B 3P4
2Materials Engineering Department, Shiraz University, Shiraz, Iran

Received 8 February 2013; Accepted 5 March 2013

Academic Editors: Y. Masuda, N. Uekawa, and R. A. Varin

Copyright © 2013 Alisina Toloei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Peprnicek, J. Duchet, L. Kovarova, J. Malac, J. F. Gerard, and J. Simonik, “Poly(vinyl chloride)/clay nanocomposites: x-ray diffraction, thermal and rheological behaviour,” Polymer Degradation and Stability, vol. 91, no. 8, pp. 1855–1860, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Y. Lee and H. K. Lee, “Characterization of organobentonite used for polymer nanocomposites,” Materials Chemistry and Physics, vol. 85, pp. 410–415, 2004. View at Publisher · View at Google Scholar
  3. J. Morawiec, A. Pawlak, M. Slouf, A. Galeski, E. Piorkowska, and N. Krasnikowa, “Preparation and properties of compatibilized LDPE/organo-modified montmorillonite nanocomposites,” European Polymer Journal, vol. 41, no. 5, pp. 1115–1122, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Gorrasi, M. Tortora, V. Vittoria et al., “Vapor barrier properties of polycaprolactone montmorillonite nanocomposites: effect of clay dispersion,” Polymer, vol. 44, no. 8, pp. 2271–2279, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Someya and M. Shibata, “Morphology, thermal, and viscoelastic properties of poly(glycidyl methacrylate-co-methyl methacrylate)-based nanocomposites with various organo-modified clays,” Polymer, vol. 46, no. 13, pp. 4891–4898, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Park and S. C. Jana, “Adverse effects of thermal dissociation of alkyl ammonium ions on nanoclay exfoliation in epoxy-clay systems,” Polymer, vol. 45, no. 22, pp. 7673–7679, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Cao, L. James Lee, T. Widya, and C. Macosko, “Polyurethane/clay nanocomposites foams: processing, structure and properties,” Polymer, vol. 46, no. 3, pp. 775–783, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. R. K. Shah and D. R. Paul, “Organoclay degradation in melt processed polyethylene nanocomposites,” Polymer, vol. 47, no. 11, pp. 4075–4084, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Gu and G. Liang, “Thermal degradation behaviour and kinetic analysis of epoxy/montmorillonite nanocomposites,” Polymer Degradation and Stability, vol. 80, pp. 383–391, 2003. View at Publisher · View at Google Scholar
  10. J. M. Yeh, C. L. Chen, Y. C. Chen et al., “Enhancement of corrosion protection effect of poly(o-ethoxyaniline) via the formation of poly(o-ethoxyaniline)-clay nanocomposite materials,” Polymer, vol. 43, pp. 2729–2746, 2002. View at Publisher · View at Google Scholar
  11. T. T. X. Hang, T. A. Truc, T. H. Nam, V. K. Oanh, J. B. Jorcin, and N. Pébère, “Corrosion protection of carbon steel by an epoxy resin containing organically modified clay,” Surface and Coatings Technology, vol. 201, no. 16-17, pp. 7408–7415, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Sugama:, “Polyphenylenesulfied/montomorillonite clay nanocomposite coatings: their efficacy in protecting steel against corrosion,” Materials Letters, vol. 60, pp. 2700–2706, 2006. View at Publisher · View at Google Scholar
  13. J. M. Yeh, H. Y. Huang, C. L. Chen, W. F. Su, and Y. H. Yu:, “Siloxane-modified epoxy resin-clay nanocomposite coatings with advanced anticorrosive properties prepared by a solution dispersion approach,” Surface and Coatings Technology, vol. 200, pp. 2753–2763, 2006. View at Publisher · View at Google Scholar
  14. M. S. Hedenqvist, A. Backman, M. Gällstedt, R. H. Boyd, and U. W. Gedde:, “Morphology and diffusion properties of whey/montmorillonite nanocomposites,” Composites Science and Technology, vol. 66, pp. 2350–2359, 2006. View at Publisher · View at Google Scholar
  15. I. Hackman and L. Hollaway, “Epoxy-layered silicate nanocomposites in civil engineering,” Composites A, vol. 37, pp. 1161–1170, 2006. View at Publisher · View at Google Scholar
  16. T. A. Truc, T. T. X Hang, V. K. Oanh et al., “Incorporation of an indole-3 butyric acid modified clay in epoxy resin for corrosion protection of carbon steel,” Surface and Coatings Technology, vol. 202, no. 20, pp. 4945–4951, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Usuki, T. Mizutani, Y. Fukushima, M. Fujimoto, and O. Kamigaito, “Composite material containing a layered silicate,” U.S. Patent 4889885, 1989.
  18. T. Massam and T. J. Pinnavaia, “Clay nanolayer reinforcement of a glassy epoxy polymer,” in Proceedings of the Materials Research Society Symposium, vol. 520, 1998. View at Publisher · View at Google Scholar
  19. I. J. Chin, T. Thurn-Albrecht, H. C. Kim, T. P. Russell, and J. Wang, “On exfoliation of montmorillonite in epoxy,” Polymer, vol. 42, no. 13, pp. 5947–5952, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. S. J. Park, D. I. Seo, and J. R. Lee:, “Surface modification of montmorillonite on surface acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites,” Journal of Colloid and Interface Science, vol. 251, pp. 160–165, 2002. View at Publisher · View at Google Scholar
  21. K. Zhang, L. Wang, F. Wang, G. Wang, and Z. Li:, “Preparation and characterization of modified-clay-reinforced and toughened epoxy-resin nanocomposites,” Journal of Applied Polymer Science, vol. 91, pp. 2649–2652, 2004. View at Publisher · View at Google Scholar
  22. A. Lee and J. D. Lichtenhan, “Thermal and viscoelastic property of epoxy-clay and hybrid inorganic-organic epoxy nanocomposites,” Journal of Applied Polymer Science, vol. 73, pp. 1993–2001, 1999.
  23. W. Li, H. Tian, and B. Hou:, “Corrosion performance of epoxy coatings modified by nanoparticulate SiO2,” Materials and Corrosion, vol. 63, pp. 44–53, 2012. View at Publisher · View at Google Scholar
  24. F. Mansfeld, An Introduction to Electrochemical Impedance Measurement, 2nd edition, 1999.
  25. S. Tait, An Introduction to Electrochemical Corrosion Testing for Practical Engineers and Science, Pair O Docs Professionals, Madison, Wis, USA, 2nd edition, 1994.