About this Journal Submit a Manuscript Table of Contents
ISRN Materials Science
Volume 2013 (2013), Article ID 682516, 7 pages
http://dx.doi.org/10.1155/2013/682516
Research Article

Electrolyte Concentration Effect of a Photoelectrochemical Cell Consisting of Nanotube Anode

1Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, 2801 W Bancroft Street, Toledo, OH 43606, USA
2Department of Mechanical Engineering, California State Polytechnic University-Pomona, 3801 W Temple Avenue, Pomona, CA 91768, USA
3Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA

Received 7 February 2013; Accepted 20 February 2013

Academic Editors: S. Kirihara and A. O. Neto

Copyright © 2013 Kai Ren et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Carver, Z. Ulissi, C. K. Ong, S. Dennison, G. H. Kelsall, and K. Hellgardt, “Modelling and development of photoelectrochemical reactor for H2 production,” International Journal of Hydrogen Energy, vol. 37, no. 1, pp. 2911–2923, 2012.
  2. T. C. An, X. H. Zhu, and Y. Xiong, “Feasibility study of photoelectrochemical degradation of methylene blue with three-dimensional electrode-photocatalytic reactor,” Chemosphere, vol. 46, no. 6, pp. 897–903, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Li, H. Y. Yip, K. H. Wong, C. Hu, J. Qu, and P. K. Wong, “Photoelectrochemical degradation of Methylene Blue with β-PbO2 electrodes driven by visible light irradiation,” Journal of Environmental Sciences, vol. 23, no. 6, pp. 998–1003, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. B. C. Liu, J. H. Li, B. X. Zhou et al., “Kinetics and mechanisms for photoelectrochemical degradation of glucose on highly effective self-organized TiO2 nanotube arrays,” Chinese Journal of Catalysis, vol. 31, no. 2, pp. 163–170, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Zhao, D. Jiang, S. Zhang, and W. Wen, “Photoelectrocatalytic oxidation of organic compounds at nanoporous TiO2 electrodes in a thin-layer photoelectrochemical cell,” Journal of Catalysis, vol. 250, no. 1, pp. 102–109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Antoniadou and P. Lianos, “Near Ultraviolet and Visible light photoelectrochemical degradation of organic substances producing electricity and hydrogen,” Journal of Photochemistry and Photobiology A, vol. 204, no. 1, pp. 69–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Zhang, L. Li, H. Zhao, and G. Li, “A portable miniature UV-LED-based photoelectrochemical system for determination of chemical oxygen demand in wastewater,” Sensors and Actuators B, vol. 141, no. 2, pp. 634–640, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Kim, J. T. Kim, K. S. Kim, S. Jeong, H. Y. Kim, and Y. S. Han, “Immobilization of TiO2 on an ITO substrate to facilitate the photoelectrochemical degradation of an organic dye pollutant,” Electrochimica Acta, vol. 54, no. 24, pp. 5715–5720, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. P. Peng, Y. T. Yeh, S. I. Shah, and C. P. Huang, “Concurrent photoelectrochemical reduction of CO2 and oxidation of methyl orange using nitrogen-doped TiO2,” Applied Catalysis B, vol. 123-124, no. 1, pp. 414–423, 2012.
  10. M. Kaneko, J. Nemoto, H. Ueno et al., “Photoelectrochemical reaction of biomass and bio-related compounds with nanoporous TiO2 film photoanode and O2-reducing cathode,” Electrochemistry Communications, vol. 8, no. 2, pp. 336–340, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Liu, J. Li, B. Zhou et al., “Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell,” Water Research, vol. 45, no. 13, pp. 3991–3998, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. X. Gan, B. J. Gan, E. Clark, L. Su, and L. Zhang, “Converting environmentally hazardous materials into clean energy using a novel nanostructured photoelectrochemical fuel cell,” Materials Research Bulletin, vol. 47, no. 9, pp. 2380–2388, 2012.
  13. X. Quan, X. Ruan, H. Zhao, S. Chen, and Y. Zhao, “Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a TiO2 nanotube film electrode,” Environmental Pollution, vol. 147, no. 2, pp. 409–414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Zhang, H. Zhao, D. Jiang, and R. John, “Photoelectrochemical determination of chemical oxygen demand based on an exhaustive degradation model in a thin-layer cell,” Analytica Chimica Acta, vol. 514, no. 1, pp. 89–97, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. V. M. Nikale, S. S. Shinde, A. R. Babar, C. H. Bhosale, and K. Y. Rajpure, “Photoelectrochemical performance of sprayed n-CdIn2Se4 photoanodes,” Solar Energy, vol. 85, no. 2, pp. 325–333, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Zhang, W. Wen, D. Jiang et al., “Photoelectrochemical characterisation of TiO2 thin films derived from microwave hydrothermally processed nanocrystalline colloids,” Journal of Photochemistry and Photobiology A, vol. 179, no. 3, pp. 305–313, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Milczarek, A. Kasuya, S. Mamykin, T. Arai, K. Shinoda, and K. Tohji, “Optimization of a two-compartment photoelectrochemical cell for solar hydrogen production,” International Journal of Hydrogen Energy, vol. 28, no. 9, pp. 919–926, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Hao, H. Lin, J. Zhang, D. Zhuang, Y. Liu, and J. Li, “Influence of iodine concentration on the photoelectrochemical performance of dye-sensitized solar cells containing non-volatile electrolyte,” Electrochimica Acta, vol. 55, no. 24, pp. 7225–7229, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Lianos, “Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell. The concept of the Photofuelcell: a review of a re-emerging research field,” Journal of Hazardous Materials, vol. 185, no. 2-3, pp. 575–590, 2011. View at Publisher · View at Google Scholar · View at Scopus