About this Journal Submit a Manuscript Table of Contents
ISRN Materials Science
Volume 2013 (2013), Article ID 732974, 4 pages
http://dx.doi.org/10.1155/2013/732974
Research Article

Synthesis of Co Filled Carbon Nanotubes by In Situ Reduction of CoCl2 Filled Nanotubes by NaBH4

Amity Institute of Nanotechnology, Amity University, Sector 125, Noida, 201313 UP, India

Received 13 May 2013; Accepted 13 June 2013

Academic Editors: V. Baranauskas and S. X. Dou

Copyright © 2013 J. Mittal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, “Nanotubes as nanoprobes in scanning probe microscopy,” Nature, vol. 384, no. 6605, pp. 147–150, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nature, vol. 393, no. 6680, pp. 49–52, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley, “Nanotube nanodevice,” Science, vol. 278, no. 5335, pp. 100–102, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. W. A. De Heer, A. Châtelain, and D. Ugarte, “A carbon nanotube field-emission electron source,” Science, vol. 270, no. 5239, pp. 1179–1180, 1995. View at Scopus
  5. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science, vol. 283, no. 5401, pp. 512–514, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Burns, B. N. Johnson, S. N. Brahmasandra et al., “An integrated nanoliter DNA analysis device,” Science, vol. 282, no. 5388, pp. 484–487, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Monthioux, “Filling single-wall carbon nanotubes,” Carbon, vol. 40, no. 10, pp. 1809–1823, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Mittal and K. L. Lin, “Connecting carbon nanotubes using Sn,” Journal of Nanoscience and Nanotechnology, vol. 13, no. 1, pp. 1–7, 2013. View at Publisher · View at Google Scholar
  9. G. Lota, E. Frackowiak, J. Mittal, and M. Monthioux, “High performance supercapacitor from chromium oxide-nanotubes based electrodes,” Chemical Physics Letters, vol. 434, no. 1–3, pp. 73–77, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Mittal, M. Monthioux, H. Allouche, and O. Stephan, “Room temperature filling of single-wall carbon nanotubes with chromium oxide in open air,” Chemical Physics Letters, vol. 339, no. 5-6, pp. 311–318, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. U. Wiedwald and P. Ziemann, “Preparation, properties and applications of magnetic nanoparticles,” Beilstein Journal of Nanotechnology, vol. 1, pp. 21–23, 2010.
  12. D. Bahadur, J. Giri, B. B. Nayak et al., “Processing, properties and some novel applications of magnetic nanoparticles,” Pramana, vol. 65, no. 4, pp. 663–679, 2005. View at Scopus
  13. Y.-J. Kang, J. Choi, C.-Y. Moon, and K. J. Chang, “Electronic and magnetic properties of single-wall carbon nanotubes filled with iron atoms,” Physical Review B, vol. 71, no. 11, Article ID 115441, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Karmakar, P. K. Tyagi, D. S. Misra, and S. M. Sharma, “Pressure-induced phase transitions in cobalt-filled multiwalled carbon nanotubes,” Physical Review B, vol. 73, no. 18, Article ID 184119, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Karmakar, S. M. Sharma, M. D. Mukadam, S. M. Yusuf, and A. K. Sood, “Magnetic behavior of iron-filled multiwalled carbon nanotubes,” Journal of Applied Physics, vol. 97, no. 5, Article ID 054306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Karmakar, S. M. Sharma, P. V. Teredesai, and A. K. Sood, “Pressure-induced phase transitions in iron-filled carbon nanotubes: X-ray diffraction studies,” Physical Review B, vol. 69, no. 16, Article ID 165414, p. 1, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Leonhardt, M. Ritschel, R. Kozhuharova et al., “Synthesis and properties of filled carbon nanotubes,” Diamond and Related Materials, vol. 12, no. 3-7, pp. 790–793, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Guerret-Piécourt, Y. Le Bouar, A. Loiseau, and H. Pascard, “Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes,” Nature, vol. 372, no. 6508, pp. 761–765, 1994. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Yosida, S. Shida, T. Ohsuna, and N. Shiraga, “Synthesis, identification, and growth mechanism of Fe, Ni, and Co crystals encapsulated in multiwalled carbon nanocages,” Journal of Applied Physics, vol. 76, no. 8, pp. 4533–4539, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. P. M. Ajayan and S. Lijima, “Capillarity-induced filling of carbon nanotubes,” Nature, vol. 361, no. 6410, pp. 333–334, 1993. View at Scopus
  21. P. J. F. Harris and S. C. Tsang, “A simple technique for the synthesis of filled carbon nanoparticles,” Chemical Physics Letters, vol. 293, no. 1-2, pp. 53–58, 1998. View at Scopus
  22. T. Hayashi, S. Hirono, M. Tomita, and S. Umemura, “Magnetic thin films of cobalt nanocrystals encapsulated in graphite- like carbon,” Nature, vol. 381, no. 6585, pp. 772–774, 1996. View at Publisher · View at Google Scholar · View at Scopus
  23. P. E. Nolan, D. C. Lynch, and A. H. Cutler, “Catalytic disproportionation of CO in the absence of hydrogen: encapsulating shell carbon formation,” Carbon, vol. 32, no. 3, pp. 477–483, 1994. View at Scopus
  24. Z. J. Liu, Z. Y. Yuan, W. Zhou, Z. Xu, and L. M. Peng, “Controlled synthesis of carbon-encapsulated Co nanoparticles by CVD,” Advanced Materials, vol. 13, no. 21, pp. 248–251, 2001. View at Scopus
  25. G. N. Glavee, K. J. Klabunde, C. M. Sorensen, and G. C. Hadjapanayis, “Borohydride reductions of metal ions. A new understanding of the chemistry leading to nanoscale particles of metals, borides, and metal borates,” Langmuir, vol. 8, no. 3, pp. 771–773, 1992. View at Scopus
  26. C. A. Brown and V. K. Ahuja, “Catalytic hydrogenation. VI. The reaction of sodium borohydride with nickel salts in ethanol solution. P-2 nickel, a highly convenient, new, selective hydrogenation catalyst with great sensitivity to substrate structure,” Journal of Organic Chemistry, vol. 38, no. 12, pp. 2226–2230, 1973. View at Scopus