About this Journal Submit a Manuscript Table of Contents
ISRN Materials Science
Volume 2014 (2014), Article ID 834629, 6 pages
Research Article

Synthesis of High Surface Area Mesoporous Silica Powder Using Anionic Surfactant

Division of Materials Science & Engineering, College of Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-ku, Seoul 133-791, Republic of Korea

Received 5 November 2013; Accepted 11 December 2013; Published 5 February 2014

Academic Editors: J. L. C. Fonseca and Y. Yue

Copyright © 2014 Sang-wook Ui et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Over the past several years, synthesized mesoporous nanosilica (SiO2) powders have been developed by many different methods. The methods include precipitation and microemulsion, the Stöber method, chemistry, and technology. In this study, mesoporous silica powders are synthesized by the sol-gel method. The sol-gel method obtains a high purity silica powder; however, the process yields a low percentage. Past syntheses of SiO2 powder precursors are expensive, but this study needs to find a replacement precursor for low cost alternatives. A high surface area was used to form an anion surfactant sodium dodecyl sulfate, which regulates the molar concentration. The particles size variability was changed by the precursor molar ratio of the sodium silicate solution with hydrochloric acid.

1. Introduction

The silica powders are considered competent materials because of their unique characteristics, such as low density, low thermal conductivity, high surface area, high thermal shock resistance, and high specific strength [1, 2]. They also have the potential to be used in a wide range of applications, including catalysts, thermal and electrical insulators, adsorbents, filters, light-weight structural materials, optoelectronic devices, humidity sensors, chemical polishing, and other fine precision equipments [36]. According to recent academic and technical reports, various chemical methods have been developed to control the particle shapes, size, and distribution of fine silica particles. In the conventional method, ammonia-catalyzed reactions of tetraethylorthosilicate with water in low-molecular-weight alcohols are synthesized by Stöber method. However, this method has to use a high cost alkoxide or organometallic compound. In this work, we demonstrate a sol-gel method that controls the sphere size, cubic shapes, and mesoporous silica using the low cost sodium silicate solution with surfactant sodium dodecyl sulfate (SDS). The pore size and surface area of the silica varied with pH and aging time. The characteristics of the silica varied with the change in surface area, pore volume, and particle shapes.

2. Experimental

2.1. Synthesis

The flow chart in Figure 1 shows the experimental steps involved in the rapid processing of cubic silica powders. In a study on the typical synthesis, the water glass solution was prepared in a beaker and the 1 M HCl solution dripped for 30 minutes. The mixture was stirred for 10 hours with a magnetic bar at 400 rpm using a churner [7]. The water glass solution was diluted with the desired weight percentage of silica in the starting material then washed in running water using a filter paper. In the washing process, our group used at least 5 L of deionized water to remove Na+ ions from the water glass solution, resulting in the formation of silicic acid and got a high purity silica powder. [8] In the next step, the displaced pore water was then removed from the beaker and the organic-gels were dried at ambient pressure in hot air drying equipment at 80°C. This far explained the fundamental synthesis of silica powder. Figure 2 shows the second method of the high surface area of nanoparticle silica. The high surface area silica powder manufactured for the experimental methods was based on experimental methods used for pH adjustment and surfactant. The reaction mixtures for the synthesis of high surface silica powder were prepared in beakers. pH 1 to 6 solutions were prepared by adding deionized water dropwise by a pipet. The other synthesis was performed with different proportions of reagents, surfactants, and pH, which are summarized in Table 1. Sodium dodecyl sulfate (SDS) was dissolved by stirring in a mixture of deionized water and concentrated hydrochloric acid (HCl). The stirring was stopped when the mixture was homogenized. The mixture was aged at 50°C in hot air drying equipment under static conditions for 24 hours. Precipitated gelation was filtered off, washed with 5 L deionized water, and dried at 80°C for 10 hours. The surfactant was removed by calcination at 700°C for 10 hours [9].

Table 1: pH reaction condition (pH 1~pH 6).
Figure 1: Flow chart showing the processing steps for the cubic silica powder.
Figure 2: Flow chart showing the processing steps for high specific surface area of nanosilica power and spherical shape particles.

2.2. Characterization

Field emission scanning electron microscopy (FE-SEM) was performed with a JEOL 6700F instrument to observe the particle morphology and size. Samples were gold-coated for SEM using a PS-2 coating unit. The crystal structure of the silica powder was determined by X-ray diffraction (XRD; Cu target; Kα; Philips DY616) and the operation parameters were scanned in a range of 2θ = 20–80° and 40 kV. The surfactant effect of the silica powders was investigated by analyzing the surface area properties with standard N2 gas adsorption using a surface area analyzer. The silica powders were first degassed at 250°C for 3 hours and the adsorption/desorption of the liquid nitrogen was recorded using equilibration times at approximately 5 min per point [10]. The specific surface area of the nanosilica powder was calculated by the Brunauer-Emmett-Teller (BET) method.

3. Results and Discussion

The basic chemical reactions of silica powder synthesis using a sodium silicate silica composite are

For the synthesis of the silica powder, the remaining Na+ in sodium silicate was removed using sodium silica in the sol-gel process. [11, 12] In the silica sol, the Na+ ion was breaking the silica network structures as a modifier during silica sol-gel gelation and decreasing the purity of silica powders. To remove the sodium from sodium silicate, sodium silicate was diluted to 10 wt% HCl acid. Silica hydrogel was made by the sol-gel reaction after the sodium ions were removed by washing and the sodium crystallization was precipitated by centrifugation. [13, 14] There are two washing methods: deionized water washed on filter paper and a centrifugation method. Compared to the XRD data, the filter paper was better for removal of Na+ ions to produce a more high-purity silica powder product; however, the main drawback is the loss of silica. [1517] The shape of the cubic powder silica was synthesized with 1 M HCl 200 mL in the water glass solution by sol-gel. The silica powder product from each of the washing and drying methods were confirmed by XRD and the morphology of the particles was examined using scanning electron microscopy (SEM) that is shown in Figures 3, 4, and 5.

Figure 3: Centrifuges, hot air drying machine, XRD graph, and SEM image.
Figure 4: Filter paper washed and hot air drying machine.
Figure 5: Filter paper and drying using a microwave.

In Figure 6, the SEM images of each particle confirm the cubic was approximately 500 nm to 1 μm in diameter. Microwave drying could produce more aggregation than that shown in Figure 7, increasing the particle size in reverse proportion to the specific surface area that was smaller than the BET data and could not be confirmed. As shown in the XRD data results (Figure 8), the transition to full cristobalite occurred at 1200°C. The pH change of the silica composite with reference to Figure 9 was performed. Figure 9 shows the change in the pH 1 to 6 ranges of various particle morphology images observed by SEM. Lower pH values produced particle shapes with more spherical shapes; however, the BET specific surface area data of the particles did not differ with the pH change (Table 2).

Table 2: Effect of pH specific surface area (m2/g).
Figure 6: SEM image of cubic particles.
Figure 7: Increasing agglomeration of particle size in reverse proportion.
Figure 8: Effect of calcination.
Figure 9: pH effect of particles shapes.

4. Conclusions

The nanostructured silica powder particles were obtained over a range of 500 nm to 1 μm particle sizes, with high specific surface area and cubic and spherical shapes by changing the surfactant pH and drying methods with sol-gel process. The silica powders were characterized in terms of the silica content, specific surface area, particle size, particle shape, and pore size distribution. The synthesis of a 10% water glass solution with 1 M HCl created a mixture reaction that effectively produced cubic particles. Increasing deionized water and HCl molar ratios created smaller size particles. The obtained silica nanoparticle showed high specific surface area.

Conflict of Interests

The authors declare that they have no conflict of interests.


  1. S. Smitha, P. Shajesh, P. Mukundan, T. D. R. Nair, and K. G. K. Warrier, “Synthesis of biocompatible hydrophobic silica-gelatin nano-hybrid by sol-gel process,” Colloids and Surfaces B, vol. 55, no. 1, pp. 38–43, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. N. N. Ghosh and P. Pramanik, “Synthesis of nano-sized ceramic powders using precipitated silica in aqueous sol-gel method,” Nanostructured Materials, vol. 8, no. 8, pp. 1041–1045, 1997. View at Publisher · View at Google Scholar
  3. P. W. J. G. Wijnen, T. P. M. Beelen, K. P. J. Rummens, H. C. P. L. Saeijs, and R. A. van Santen, “Silica gel from water glass: a SAXS study of the formation and ageing of fractal aggregates,” Journal of Applied Crystallography, vol. 24, no. 5, pp. 759–764, 1991. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Fouzri, R. Dorbez-Sridi, and M. Oumezzine, “Water confined in silica gel and in vycor glass at low and room temperature, x-ray diffraction study,” Journal of Chemical Physics, vol. 116, no. 2, pp. 791–797, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Helmich and F. Rauch, “On the mechanism of diffusion of water in silica glass,” Glastechnische Berichte, vol. 66, no. 8, pp. 195–200, 1993. View at Scopus
  6. T. Matsuzawa, K. Mase, and S. Inoue, “Synthesis and application of a silica nanocomposite filler using water glass and a resole-type phenol resin,” Journal of Applied Polymer Science, vol. 112, no. 6, pp. 3748–3753, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Agarwal, M. Tomozawa, and W. A. Lanford, “Effect of stress on water diffusion in silica glass at various temperatures,” Journal of Non-Crystalline Solids, vol. 167, no. 1-2, pp. 139–148, 1994. View at Scopus
  8. K. Aramaki, “Synergistic inhibition of zinc corrosion in 0.5 M NaCl by combination of cerium(III) chloride and sodium silicate,” Corrosion Science, vol. 44, no. 4, pp. 871–886, 2002. View at Publisher · View at Google Scholar
  9. J. Yatabe, T. Yamada, T. Mogi, S. Yamada, T. Ikawa, and T. Kageyama, “Preparation of porous amorphous silica from water glass as raw materials,” Nippon Kagaku Kaishi, vol. 3, 304 pages, 1993.
  10. J. Chandradass, S. Kang, and D.-S. Bae, “Synthesis of silica aerogel blanket by ambient drying method using water glass based precursor and glass wool modified by alumina sol,” Journal of Non-Crystalline Solids, vol. 354, no. 34, pp. 4115–4119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Arai, H. Segawa, and K. Yoshida, “Synthesis of nano silica particles for polishing prepared by sol-gel method,” Journal of Sol-Gel Science and Technology, vol. 32, no. 1–3, pp. 79–83, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Borisov, Y. Lahaye, and H. Palme, “The effect of sodium on the solubilities of metals in silicate melts,” American Mineralogist, vol. 91, no. 5-6, pp. 762–771, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. K. M. Davis and M. Tomozawa, “Water diffusion into silica glass: structural changes in silica glass and their effect on water solubility and diffusivity,” Journal of Non-Crystalline Solids, vol. 185, no. 3, pp. 203–220, 1995. View at Scopus
  14. M. Tomozawa, D.-L. Kim, and V. Lou, “Preparation of high purity, low water content fused silica glass,” Journal of Non-Crystalline Solids, vol. 296, no. 1-2, pp. 102–106, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Kamiya, A. Oka, H. Nasu, and T. Hashimoto, “Comparative study of structure of silica gels from different sources,” Journal of Sol-Gel Science and Technology, vol. 19, no. 1–3, pp. 495–499, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. F. W. Chang, M. T. Tsay, M. S. Kuo, and C. M. Yang, “Characterization of nickel catalysts on RHA-Al2O3 composite oxides prepared by ion exchange,” Applied Catalysis A, vol. 226, no. 1-2, pp. 213–224, 2002. View at Publisher · View at Google Scholar
  17. B. Andričić, T. Kovačić, and I. Klarić, “Kinetic analysis of the thermooxidative degradation of poly(vinyl-chloride) in poly(vinyl chloride)/methyl methacrylate-butadiene-styrene blends—2. Nonisothermal degradation,” Polymer Degradation and Stability, vol. 79, no. 2, pp. 265–270, 2003. View at Publisher · View at Google Scholar