About this Journal Submit a Manuscript Table of Contents
ISRN Mathematical Physics
Volume 2012 (2012), Article ID 896156, 11 pages
http://dx.doi.org/10.5402/2012/896156
Research Article

A Study of Non-Euclidean s-Topology

Department of Mathematics, Faculty of Science, Dayalbagh Educational Institute (Deemed University), Dayalbagh, Agra 282 110, India

Received 30 April 2012; Accepted 28 May 2012

Academic Editors: G. Cleaver and M. Znojil

Copyright © 2012 Gunjan Agrawal and Sampada Shrivastava. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. C. Zeeman, โ€œThe topology of Minkowski space,โ€ Topology, vol. 6, no. 2, pp. 161โ€“170, 1967.
  2. S. Nanda, โ€œTopology for Minkowski space,โ€ Journal of Mathematical Physics, vol. 12, no. 3, pp. 394โ€“401, 1971.
  3. S. Nanda, โ€œWeaker versions of Zeeman's conjectures on topologies for Minkowski space,โ€ Journal of Mathematical Physics, vol. 13, no. 1, pp. 12โ€“15, 1972.
  4. S. Nanda and H. K. Panda, โ€œMinkowski space with order topology is simply connected,โ€ International Journal of Theoretical Physics, vol. 12, no. 6, pp. 393โ€“399, 1975.
  5. G. Dossena, โ€œSome results on the Zeeman topology,โ€ Journal of Mathematical Physics, vol. 48, no. 11, Article ID 113507, p. 13, 2007. View at Publisher ยท View at Google Scholar
  6. G. Agrawal and S. Shrivastava, โ€œt-topology on the n-dimensional Minkowski space,โ€ Journal of Mathematical Physics, vol. 50, no. 5, Article ID 053515, 6 pages, 2009. View at Publisher ยท View at Google Scholar
  7. S. W. Hawking, A. R. King, and P. J. McCarthy, โ€œA new topology for curved space-time which incorporates the causal, differential, and conformal structures,โ€ Journal of Mathematical Physics, vol. 17, no. 2, pp. 174โ€“181, 1976.
  8. G. L. Naber, The Geometry of Minkowski Spacetime, vol. 92 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1992, An introduction to the mathematics of the special theory of relativity.
  9. J. R. Munkres, Topology—A First Course, Pearson Education Inc., Singapore, 2000.