About this Journal Submit a Manuscript Table of Contents
ISRN Mechanical Engineering
Volume 2012 (2012), Article ID 585496, 11 pages
http://dx.doi.org/10.5402/2012/585496
Research Article

Numerical Study of Fluid Dynamic and Heat Transfer in a Compact Heat Exchanger Using Nanofluids

Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Km7, Jalan Kajang-Puchong, 43009 Kajang, Malaysia

Received 5 November 2011; Accepted 19 December 2011

Academic Editors: S. W. Chang, A. E. Huespe, K. Y. Suh, and B. Yu

Copyright © 2012 P. Gunnasegaran et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. M. Kays and A. L. London, Compact Heat Exchanger, McGraw-Hill, USA, 3rd edition, 1984.
  2. S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in Developments and Applications of Non-Newtonian Flows, D. A. Siginer and H. P. Wang, Eds., FED-V.231/MD-V.66, pp. 99–105, ASME, New York, NY, USA, 1995.
  3. S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids,” Journal of Heat Transfer, vol. 125, no. 4, pp. 567–574, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Trisaksri and S. Wongwises, “Critical review of heat transfer characteristics of nanofluids,” Renewable and Sustainable Energy Reviews, vol. 11, no. 3, pp. 512–523, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Q. Wang and A. S. Mujumdar, “Heat transfer characteristics of nanofluids: a review,” International Journal of Thermal Sciences, vol. 46, no. 1, pp. 1–19, 2007. View at Publisher · View at Google Scholar
  6. R. L. Webb, Principles of Enhanced Heat Transfer, John Wiley & Sons, New York, NY, USA, 1993.
  7. X. Wang, X. Xu, and S. U.S. Choi, “Thermal conductivity of nanoparticle-fluid mixture,” Journal of thermophysics and heat transfer, vol. 13, no. 4, pp. 474–480, 1999.
  8. H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, and Q. Wu, “Thermal conductivity enhancement of suspensions containing nanosized alumina particles,” Journal of Applied Physics, vol. 91, no. 7, p. 4568, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Applied Physics Letters, vol. 78, no. 6, pp. 718–720, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Y. Leong, R. Saidur, S. N. Kazi, and A. H. Mamun, “Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator),” Applied Thermal Engineering, vol. 30, no. 17-18, pp. 2685–2692, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Farajollahi, S. G. Etemad, and M. Hojjat, “Heat transfer of nanofluids in a shell and tube heat exchanger,” International Journal of Heat and Mass Transfer, vol. 53, no. 1–3, pp. 12–17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. R. S. Vajjha, D. K. Das, and P. K. Namburu, “Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator,” International Journal of Heat and Fluid Flow, vol. 31, no. 4, pp. 613–621, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. D. G. Charyulu, G. Singh, and J. K. Sharma, “Performance evaluation of a radiator in a diesel engine—a case study,” Applied Thermal Engineering, vol. 19, no. 6, pp. 625–639, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. M. N. Pantzali, A. A. Mouza, and S. V. Paras, “Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE),” Chemical Engineering Science, vol. 64, no. 14, pp. 3290–3300, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. S. E. B. Maiga, S. J. Palm, C. T. Nguyen, G. Roy, and N. Galanis, “Heat transfer enhancement by using nanofluids in forced convection flows,” International Journal of Heat and Fluid Flow, vol. 26, no. 4, pp. 530–546, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Vasu, K. R. Krishna, and A. C. S. Kumar, “Application of nanofluids in thermal design of compact heat exchanger,” The International Journal of Nanotechnology and Applications, vol. 2, pp. 75–87, 2008.
  17. A. P. Frass, Heat Exchanger Design, John Wiley & Sons, New York, NY, USA, 2nd edition, 1989.
  18. S. U. S. Choi, Z. G. Zhang, and P. Keblinski, “Nanofluids,” in Encyclopedia of Nanoscience and Nanotechnology, vol. 6, pp. 757–773, 2004.
  19. Y. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” International Journal of Heat and Mass Transfer, vol. 43, no. 19, pp. 3701–3707, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. J. C. Maxwell, A Treatise on Electricity and Magnetism, Oxford University Press, Cambridge, UK, 2nd edition, 1904.
  21. A. Einstein, Investigations on the Theory of the Brownian Movement, Dover Publications, New York, NY, USA, 1956.
  22. A. Akbarinia and A. Behzadmehr, “Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes,” Applied Thermal Engineering, vol. 27, no. 8-9, pp. 1327–1337, 2007. View at Publisher · View at Google Scholar
  23. J. Lee and I. Mudawar, “Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels,” International Journal of Heat and Mass Transfer, vol. 50, no. 3-4, pp. 452–463, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. J. D. Anderson, Computational Fluid Dynamic: The Basics with Applications, McGraw-Hill, New York, NY, USA.
  25. K. W. Park and H. Y. Pak, “Flow and heat transfer characteristics in flat tubes of a radiator,” Numerical Heat Transfer, Part A, vol. 41, no. 1, pp. 19–40, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. F. P. Incropera and D. P. DeWitt, Introduction to Heat Transfer, John Wiley & Sons, New York, NY, USA, 3rd edition, 1996.
  27. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Inc., McGraw-Hill, New York, NY, USA, 1980.
  28. B. E. Launder and D. B. Spalding, Mathematical Models of Turbulence, Academic Press, New York, NY, USA.
  29. H. A. Mohammed, P. Gunnasegaran, and N. H. Shuaib, “Influence of various base nanofluids and substrate materials on heat transfer in trapezoidal microchannel heat sinks,” International Communications in Heat and Mass Transfer, vol. 38, no. 2, pp. 194–201, 2011. View at Publisher · View at Google Scholar
  30. S. M. S. Murshed, K. C. Leong, and C. Yang, “Thermophysical and electrokinetic properties of nanofluids—a critical review,” Applied Thermal Engineering, vol. 28, no. 17-18, pp. 2109–2125, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. G. H. Ko, K. Heo, K. Lee et al., “An experimental study on the pressure drop of nanofluids containing carbon nanotubes in a horizontal tube,” International Journal of Heat and Mass Transfer, vol. 50, no. 23-24, pp. 4749–4753, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. W. Duangthongsuk and S. Wongwises, “An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime,” International Journal of Heat and Mass Transfer, vol. 53, no. 1–3, pp. 334–344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. C. J. Ho, L. C. Wei, and Z. W. Li, “An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid,” Applied Thermal Engineering, vol. 30, no. 2-3, pp. 96–103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. L. F. Moody, “Friction factors for pipe flow,” Journal of Heat Transfer, vol. 66, no. 8, pp. 671–684, 1944.