About this Journal Submit a Manuscript Table of Contents
ISRN Mechanical Engineering
Volume 2012 (2012), Article ID 915154, 10 pages
http://dx.doi.org/10.5402/2012/915154
Research Article

Exergy Assessment of Single Stage Solar Adsorption Refrigeration System Using ANN

Department of Mechanical Engineering, National Institute of Technology Calicut, Kerala 673601, India

Received 18 May 2012; Accepted 13 June 2012

Academic Editors: G. A. Britton and Y. He

Copyright © 2012 V. Baiju and C. Muraleedharan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. E. Anyanwu, “Environmental pollution: restructuring the refrigeration industry as a way out,” Environment Protection Engineering, vol. 26, no. 4, pp. 17–27, 2000. View at Scopus
  2. E. E. Anyanwu, “Review of solid adsorption solar refrigerator I: an overview of the refrigeration cycle,” Energy Conversion and Management, vol. 44, no. 2, pp. 301–312, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. D. S. Jung and R. Radermacher, “Performance simulation of single-evaporator domestic refrigerators charged with pure and mixed refrigerants,” International Journal of Refrigeration, vol. 14, no. 4, pp. 223–232, 1991. View at Scopus
  4. Y. S. Chang, M. S. Kim, and S. T. Ro, “Performance and heat transfer characteristics of hydrocarbon refrigerants in a heat pump system,” International Journal of Refrigeration, vol. 23, no. 3, pp. 232–242, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Sumathy, K. H. Yeung, and L. Yong, “Technology development in the solar adsorption refrigeration systems,” Progress in Energy and Combustion Science, vol. 29, no. 4, pp. 301–327, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. N. M. Khattab, “A novel solar-powered adsorption refrigeration module,” Applied Thermal Engineering, vol. 24, no. 17-18, pp. 2747–2760, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. D. E. Chelghoum and A. Bejan, “Second law analysis of solar collector with energy storage capacity,” ASME Journal of Solar Energy Engineering, vol. 107, no. 3, pp. 244–251, 1985. View at Scopus
  8. A. F. Haught, “Physical consideration of solar energy conversion,” ASME Journal of Solar Energy Engineering, vol. 106, no. 1, pp. 3–15, 1984. View at Scopus
  9. M. Mohanraj, S. Jayaraj, and C. Muraleedharan, “Modeling of a direct expansion solar assisted heat pump using artificial neural networks,” International Journal of Green Energy, vol. 5, no. 6, pp. 520–532, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Mohanraj, S. Jayaraj, and C. Muraleedharan, “Exergy analysis of direct expansion solar-assisted heat pumps using artificial neural networks,” International Journal of Energy Research, vol. 33, no. 11, pp. 1005–1020, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. H. Kuang, K. Sumathy, and R. Z. Wang, “Study on a direct-expansion solar-assisted heat pump water heating system,” International Journal of Energy Research, vol. 27, no. 5, pp. 531–548, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Hosoz and H. M. Ertunc, “Modelling of a cascade refrigeration system using artificial neural network,” International Journal of Energy Research, vol. 30, no. 14, pp. 1200–1215, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. A. Kalogirou and M. Bojic, “Artificial neural networks for the prediction of the energy consumption of a passive solar building,” Energy, vol. 25, no. 5, pp. 479–491, 2000. View at Scopus
  14. A. Pacheco-Vega, M. Sen, K. T. Yang, and R. L. McClain, “Neural network analysis of fin-tube refrigerating heat exchanger with limited experimental data,” International Journal of Heat and Mass Transfer, vol. 44, no. 4, pp. 763–770, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Palau, E. Velo, and L. Puigjaner, “Use of neural networks and expert systems to control a gas/solid sorption chilling machine,” International Journal of Refrigeration, vol. 22, no. 1, pp. 59–66, 1999. View at Scopus
  16. A. Chouai, S. Laugier, and D. Richon, “Modeling of thermodynamic properties using neural networks: application to refrigerants,” Fluid Phase Equilibria, vol. 199, no. 1-2, pp. 53–62, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Bechtler, M. W. Browne, P. K. Bansal, and V. Kecman, “New approach to dynamic modelling of vapour-compression liquid chillers: artificial neural networks,” Applied Thermal Engineering, vol. 21, no. 9, pp. 941–953, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Baiju and C. Muraleedharan, “Prediction of performance parameters of single stage solar adsorption refrigeration system by ANN,” ISRN Journal of Thermodynamics, vol. 2012, Article ID 102376, 8 pages, 2012. View at Publisher · View at Google Scholar
  19. S. A. Kalogirou, S. Panteliou, and A. Dentsoras, “Artificial neural networks used for the performance prediction of a thermosiphon solar water heater,” Renewable Energy, vol. 18, no. 1, pp. 87–99, 1999. View at Scopus
  20. T. T. Chow, G. Q. Zhang, Z. Lin, and C. L. Song, “Global optimization of absorption chiller system by genetic algorithm and neural network,” Energy and Buildings, vol. 34, no. 1, pp. 103–109, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. J. P. Holman, Experimental Methods For Engineers, McGraw-Hill, New Delhi, India, 7th edition, 2001.
  22. V. Baiju and C. Muraleedharan, “Performance study of a two stage solar adsorption refrigeration system,” International Journal of Engineering Science and Technology, vol. 3, pp. 5754–5764, 2011.