About this Journal Submit a Manuscript Table of Contents
ISRN Mechanical Engineering
Volume 2013 (2013), Article ID 249035, 10 pages
http://dx.doi.org/10.1155/2013/249035
Research Article

Finite Element Multibody Simulation of a Breathing Crack in a Rotor with a Cohesive Zone Model

Institute of Engineering Mechanics, Karlsruhe Institute of Technology, Kaiserstraße 10, 76131 Karlsruhe, Germany

Received 17 January 2013; Accepted 6 February 2013

Academic Editors: N. Anifantis, R. Brighenti, X. Deng, F. Liu, and J. Seok

Copyright © 2013 Rugerri Toni Liong and Carsten Proppe. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. K. Georgantzinos and N. K. Anifantis, “An insight into the breathing mechanism of a crack in a rotating shaft,” Journal of Sound and Vibration, vol. 318, no. 1-2, pp. 279–295, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Wauer, “On the dynamics of cracked rotors: literature survey,” Applied Mechanics Review, vol. 43, no. 1, pp. 13–17, 1990.
  3. A. D. Dimarogonas, “Vibration of cracked structures: a state of the art review,” Engineering Fracture Mechanics, vol. 55, no. 5, pp. 831–857, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Sabnavis, R. G. Kirk, M. Kasarda, and D. Quinn, “Cracked shaft detection and diagnostics: a literature review,” Shock and Vibration Digest, vol. 36, no. 4, pp. 287–296, 2004. View at Scopus
  5. C. Kumar and V. Rastogi, “A brief review on dynamics of a cracked rotor,” International Journal of Rotating Machinery, vol. 2009, Article ID 758108, 6 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Bachschmid, P. Pennacchi, and E. Tanzi, “Some remarks on breathing mechanism, on non-linear effects and on slant and helicoidal cracks,” Mechanical Systems and Signal Processing, vol. 22, no. 4, pp. 879–904, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Bachschmid, P. Pennachi, and E. Tanzi, Cracked Rotors, Springer, Berlin, Germany, 2011.
  8. S. Andrieux and C. Varé, “A 3D cracked beam model with unilateral contact. Application to rotors,” European Journal of Mechanics, A, vol. 21, no. 5, pp. 793–810, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Varé and S. Andrieux, “Modeling of a cracked beam section under bending,” in Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technolohy (SMiRT 18), pp. 281–290, Beijing, China, 2005.
  10. S. E. Arem and H. Maitournam, “A cracked beam finite element for rotating shaft dynamics and stability analysis,” Journal of Mechanics of Materials and Structures, vol. 3, no. 5, pp. 893–910, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. D. Dimarogonas and S. A. Paipetis, Analytical Methods in Rotor Dynamics, Applied Science Publishers, London, UK, 1983.
  12. A. K. Darpe, K. Gupta, and A. Chawla, “Coupled bending, longitudinal and torsional vibrations of a cracked rotor,” Journal of Sound and Vibration, vol. 269, no. 1-2, pp. 33–60, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. W. M. Ostachowicz and M. Krawczuk, “Coupled torsional and bending vibrations of a rotor with an open crack,” Archive of Applied Mechanics, vol. 62, no. 3, pp. 191–201, 1992. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Kulesza and J. T. Sawicki, “Rigid finite element model of a cracked rotor,” Journal of Sound and Vibration, vol. 331, pp. 4145–4169, 2012.
  15. A. S. Bouboulas and N. K. Anifantis, “Finite element modeling of a vibrating beam with a breathing crack: observations on crack detection,” Structural Health Monitoring, vol. 10, no. 2, pp. 131–145, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. D. S. Dugdale, “Yielding of steel sheets containing slits,” Journal of the Mechanics and Physics of Solids, vol. 8, no. 2, pp. 100–104, 1960. View at Scopus
  17. G. I. Barenblatt, “The mathematical theory of equilibrium crack in brittle fracture,” Advances in Applied Mechanics, vol. 7, pp. 55–129, 1962. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Siegmund and W. Brocks, “Tensile decohesion by local failure criteria,” Technische Mechanik, vol. 18, no. 4, pp. 261–270, 1998.
  19. T. Siegmund and W. Brocks, “A numerical study on the correlation between the work of separation and the dissipation rate in ductile fracture,” Engineering Fracture Mechanics, vol. 67, no. 2, pp. 139–154, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Anvari, I. Scheider, and C. Thaulow, “Simulation of dynamic ductile crack growth using strain-rate and triaxiality-dependent cohesive elements,” Engineering Fracture Mechanics, vol. 73, no. 15, pp. 2210–2228, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Scheider, “Derivation of separation laws for cohesive models in the course of ductile fracture,” Engineering Fracture Mechanics, vol. 76, no. 10, pp. 1450–1459, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Banerjee and R. Manivasagam, “Triaxiality dependent cohesive zone model,” Engineering Fracture Mechanics, vol. 76, no. 12, pp. 1761–1770, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. D. Dimarogonas and C. A. Papadopoulos, “Vibration of cracked shafts in bending,” Journal of Sound and Vibration, vol. 91, no. 4, pp. 583–593, 1983. View at Scopus
  24. A. C. Chasalevris and C. A. Papadopoulos, “A continuous model approach for cross-coupled bending vibrations of a rotor-bearing system with a transverse breathing crack,” Mechanism and Machine Theory, vol. 44, no. 6, pp. 1176–1191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. C. A. Papadopoulos, “The strain energy release approach for modeling cracks in rotors: a state of the art review,” Mechanical Systems and Signal Processing, vol. 22, no. 4, pp. 763–789, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. R. T. Liong and C. Proppe, “Application of the cohesive zone model to the analysis of a rotor with a transverse crack,” Journal of Sound and Vibration, vol. 332, no. 8, pp. 2098–2110, 2013.
  27. C. Shet and N. Chandra, “Analysis of energy balance when using Cohesive Zone Models to simulate fracture processes,” Journal of Engineering Materials and Technology, vol. 124, no. 4, pp. 440–450, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Li and N. Chandra, “Analysis of crack growth and crack-tip plasticity in ductile materials using cohesive zone models,” International Journal of Plasticity, vol. 19, no. 6, pp. 849–882, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Bachschmid, P. Pennacchi, and E. Tanzi, “On the evolution of vibrations in cracked rotors,” in Proceedings of the 8th IFToMM International Conference on Rotor Dynamics, pp. 304–310, Seoul, Korea, 2010.
  30. O. S. Jun, H. J. Eun, Y. Y. Earmme, and C. W. Lee, “Modelling and vibration analysis of a simple rotor with a breathing crack,” Journal of Sound and Vibration, vol. 155, no. 2, pp. 273–290, 1992. View at Scopus
  31. J. J. Sinou and A. W. Lees, “The influence of cracks in rotating shafts,” Journal of Sound and Vibration, vol. 285, no. 4-5, pp. 1015–1037, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. S. Shih and J. J. Chen, “Analysis of fatigue crack growth on a cracked shaft,” International Journal of Fatigue, vol. 19, no. 6, pp. 477–485, 1997. View at Scopus
  33. R. T. Liong and C. Proppe, “Application of the cohesive zone model for the investigation of the dynamic behavior of a rotating shaft with a transverse crack,” in Proceedings of the 8th IFToMM International Conference on Rotor Dynamics, pp. 628–636, Seoul, Korea, September 2010.
  34. R. T. Liong and C. Proppe, “Application of the cohesive zone model to the analysis of a rotor with a transverse crack,” in Proceedings of the 8th International Conference on Structural Dynamics, pp. 3434–3442, Leuven, Belgium, 2011.