About this Journal Submit a Manuscript Table of Contents
ISRN Metallurgy
Volume 2012 (2012), Article ID 670389, 6 pages
http://dx.doi.org/10.5402/2012/670389
Research Article

Development of MoSi2-SiC Component for Satellite Launch Vehicle

Materials And Metallurgy Group, Materials And Mechanical Entity, Vikram Sarabhai Space Centre, Indian Space Research Organisation, Trivandrum 695 022, India

Received 7 August 2012; Accepted 29 August 2012

Academic Editors: D. Escalera and P.-Y. Lee

Copyright © 2012 G. P. Khanra et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. L. Jeng and E. J. Lavernia, “Processing of molybdenum disilicide,” Journal of Materials Science, vol. 29, pp. 2557–2571, 1994. View at Publisher · View at Google Scholar
  2. R. Mitra, N. E. Prasad, and Y. R. Mahajan, “REACTION hot pressed silicides and silicide matrix composites: processing, microstructure and properties,” Transaction of the Indian Ceramic Society, vol. 56, no. 3, pp. 71–78, 1997.
  3. A. K. Vasudevan and J. J. Petrovic, “A comparative overview of molybdenum disilicide composites,” Materials Science and Engineering: A, vol. 155, pp. 1–17, 1992. View at Publisher · View at Google Scholar
  4. J. J. Petrovic, “Mechanical behavior of MoSi2 and MoSi2 composites,” Materials Science and Engineering: A, vol. 192-193, pp. 31–37, 1995. View at Publisher · View at Google Scholar
  5. J. J. Petrovic and R. E. Honnell, “Partially stabilized ZrO2 particle-MoSi2 matrix composites,” Journal of Materials Science, vol. 25, no. 10, pp. 4453–4456, 1990. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Sadananda, C. R. Feng, H. Jones, and J. Petrovic, “Creep of molybdenum disilicide composite,” Materials Science and Engineering: A, vol. 155, pp. 227–239, 1992. View at Publisher · View at Google Scholar
  7. F. D. GAC and J. J. Petrovic, “Feasibility of a composite of SiC Whiskers in an MoSi2 matrix,” Journal of the American Ceramic Society, vol. 68, no. 8, pp. C-200–CC201, 1985. View at Publisher · View at Google Scholar
  8. Peter J. Meschter and Daniel S. Schwartz, “Silicide-matrix materials for high-temperature applications,” Journal of metals, vol. 41, no. 11, pp. 52–55, 1989. View at Scopus
  9. M. J. Maloney and R. J. Hecht, “Development of continuous-fiber-reinforced MoSi2-base composites,” Materials Science and Engineering: A, vol. 155, pp. 19–31, 1992. View at Publisher · View at Google Scholar
  10. S. C. Deevi, “Diffusional reactions in the combustion synthesis of MoSi2,” Materials Science and Engineering: A, vol. 149, pp. 241–251, 1992. View at Publisher · View at Google Scholar
  11. R. Mitra, Y. R. Mahajan, N. E. Prasad, and W. A. Chiun, “Processing-microstructure-property relationships in reaction hot-pressed MoSi2 and MoSi2/SiCp composites,” Materials Science and Engineering: A, vol. 225, pp. 105–117, 1997. View at Publisher · View at Google Scholar
  12. R. B. Schwarz, S. R. Srinivasan, J. J. Petrovic, and C. J. Maggiore, “Synthesis of molybdenum disilicide by mechanical alloying,” Materials Science and Engineering A, vol. 155, no. 1-2, pp. 75–83, 1992. View at Scopus
  13. NIST Structural Ceramics data base no. 30.
  14. R. M. German, Powder Metallurgy Science, MPIF, 2nd edn edition, 1984.
  15. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction To Ceramics, Wiley, New York, NY, USA, 2nd edition, 1976.