About this Journal Submit a Manuscript Table of Contents
ISRN Microbiology
Volume 2012 (2012), Article ID 256261, 22 pages
http://dx.doi.org/10.5402/2012/256261
Review Article

The Main Aeromonas Pathogenic Factors

Departamento Microbiología, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain

Received 2 July 2012; Accepted 19 July 2012

Academic Editors: P. Di Martino, S. H. Flint, and A. Hamood

Copyright © 2012 J. M. Tomás. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. R. Colwell, M. T. MacDonell, and J. De Ley, “Proposal to recognize the family Aeromonadaceae fam. nov,” International Journal of Systematic Bacteriology, vol. 36, no. 3, pp. 473–477, 1986. View at Scopus
  2. M. Popoff, “Genus III. Aeromonas. Kluyver and Van Niel 1936, 398 AL,” in Bergey's Manual of Systematic Bacteriology, Vol. 1, N. R. Krieg and J. J. Holt, Eds., section 5, pp. 545–547, Williams and Wilkins, London, 9th edition, 1984.
  3. A. Martin-Carnahan and S. W. Joseph, “Order XII. Aeromonadales,” in Bergey's Manual of Systematic Bacteriology, Vol. 2 Part B, D. J. Brenner, N. R. Krieg, and J. T. Staley, Eds., pp. 556–578, Springer, New York, NY, USA, 2nd edition, 2005.
  4. S. L. Abbott, W. K. W. Cheung, and J. M. Janda, “The genus Aeromonas: biochemical characteristics, atypical reactions, and phenotypic identification schemes,” Journal of Clinical Microbiology, vol. 41, no. 6, pp. 2348–2357, 2003. View at Scopus
  5. A. J. Martinez-Murcia, S. Benlloch, and M. D. Collins, “Phylogenetic interrelationships of members of the genera Aeromonas and Plesiomonas as determined by 16S ribosomal DNA sequencing: lack of congruence with results of DNA-DNA hybridizations,” International Journal of Systematic Bacteriology, vol. 42, no. 3, pp. 412–421, 1992. View at Scopus
  6. A. J. Martínez-Murcia, C. Esteve, E. Garay, and M. D. Collins, “Aeromonas allosaccharophila sp. nov., a new mesophilic member of the genus Aeromonas,” FEMS Microbiology Letters, vol. 91, no. 3, pp. 199–205, 1992. View at Publisher · View at Google Scholar · View at Scopus
  7. M. J. Figueras, J. Guarro, A. Martinez-Murcia, and J. Graf, “Use of restriction fragment length polymorphism of the PCR-amplified 16S rRNA gene for the identification of Aeromonas spp.,” Journal of Clinical Microbiology, vol. 38, no. 5, pp. 2023–2025, 2000. View at Scopus
  8. M. A. Yáñez, V. Catalán, D. Apráiz, M. J. Figueras, and A. J. Martínez-Murcia, “Phylogenetic analysis of members of the genus Aeromonas based on gyrB gene sequences,” International Journal of Systematic and Evolutionary Microbiology, vol. 53, no. 3, pp. 875–883, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Soler, M. A. Yáñez, M. R. Chacon et al., “Phylogenetic analysis of the genus Aeromonas based on two housekeeping genes,” International Journal of Systematic and Evolutionary Microbiology, vol. 54, no. 5, pp. 1511–1519, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Esteve, M. C. Gutierrez, and A. Ventosa, “Aeromonas encheleia sp. nov., isolated from European Eels,” International Journal of Systematic Bacteriology, vol. 45, no. 3, pp. 462–466, 1995. View at Scopus
  11. G. Huys, P. Kämpfer, M. Altwegg et al., “Aeromonas popoffii sp. nov., a mesophilic bacterium isolated from drinking water production plants and reservoirs,” International Journal of Systematic Bacteriology, vol. 47, no. 4, pp. 1165–1171, 1997. View at Scopus
  12. V. Pidiyar, A. Kaznowski, N. B. Narayan, M. Patole, and Y. S. Shouche, “Aeromonas culicicola sp. nov., from the midgut of Culex quinquefasciatus,” International Journal of Systematic and Evolutionary Microbiology, vol. 52, no. 5, pp. 1723–1728, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Harf-Monteil, A. L. Flèche, P. Riegel et al., “Aeromonas simiae sp. nov., isolated from monkey faeces,” International Journal of Systematic and Evolutionary Microbiology, vol. 54, no. 2, pp. 481–485, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Miñana-Galbis, M. Farfán, M. C. Fusté, and J. G. Lorén, “Aeromonas molluscorum sp. nov., isolated from bivalve molluscs,” International Journal of Systematic and Evolutionary Microbiology, vol. 54, no. 6, pp. 2073–2078, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. A. J. Martínez-Murcia, “Phylogenetic positions of Aeromonas encheleia, Aeromonas popoffii, Aeromonas DNA hybridization Group 11 and Aeromonas Group 501,” International Journal of Systematic Bacteriology, vol. 49, no. 4, pp. 1403–1408, 1999. View at Scopus
  16. J. M. Janda and S. L. Abbott, “The genus Aeromonas: taxonomy, pathogenicity, and infection,” Clinical Microbiology Reviews, vol. 23, no. 1, pp. 35–73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. M. Kirov, “Aeromonas and Plesiomonas species,” in Food Microbiology, Fundamentals and Frontiers, M. P. Doyle, L. R. Beuchat, and T. J. Montville, Eds., pp. 265–287, ASM Press, Washington, DC, USA, 1997.
  18. K. N. Majeed, A. F. Egan, and I. C. Mac Rae, “Production of exotoxins by Aeromonas spp. at 5°C,” Journal of Applied Bacteriology, vol. 69, no. 3, pp. 332–337, 1990. View at Scopus
  19. J. M. Janda, “Recent advances in the study of the taxonomy, pathogenicity, and infectious syndromes associated with the genus Aeromonas,” Clinical Microbiology Reviews, vol. 4, no. 4, pp. 397–410, 1991. View at Scopus
  20. S. W. Joseph and A. Carnahan, “The isolation, identification, and systematics of the motile Aeromonas species,” Annual Review of Fish Diseases, vol. 4, pp. 315–343, 1994. View at Scopus
  21. B. Austin, D. A. Austin, I. Dalsgaard et al., “Characterization of atypical Aeromonas salmonicida by different methods,” Systematic and Applied Microbiology, vol. 21, no. 1, pp. 50–64, 1998. View at Scopus
  22. J. M. Janda and S. L. Abbott, “Evolving concepts regarding the genus Aeromonas: an expanding panorama of species, disease presentations, and unanswered questions,” Clinical Infectious Diseases, vol. 27, no. 2, pp. 332–344, 1998. View at Scopus
  23. J. Vila, J. Ruiz, F. Gallardo et al., “Aeromonas spp. and traveler's diarrhea: clinical features and antimicrobial resistance,” Emerging Infectious Diseases, vol. 9, no. 5, pp. 552–555, 2003. View at Scopus
  24. S. M. Presley, T. R. Rainwater, G. P. Austin et al., “Assessment of pathogens and toxicants in New Orleans, LA following Hurricane Katrina,” Environmental Science and Technology, vol. 40, no. 2, pp. 468–474, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. H. B. Yu, Y. L. Zhang, Y. L. Lau et al., “Identification and characterization of putative virulence genes and gene clusters in Aeromonas hydrophila PPD134/91,” Applied and Environmental Microbiology, vol. 71, no. 8, pp. 4469–4477, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. E. Reith, R. K. Singh, B. Curtis et al., “The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen,” BMC Genomics, vol. 9, article 427, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Seshadri, S. W. Joseph, A. K. Chopra et al., “Genome sequence of Aeromonas hydrophila ATCC 7966T: jack of all trades,” Journal of Bacteriology, vol. 188, no. 23, pp. 8272–8282, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Li, Y. Liu, Z. Zhou et al., “Complete genome sequence of Aeromonas veronii strain B565,” Journal of Bacteriology, vol. 193, no. 13, pp. 3389–3390, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. I. S. Roberts, “The biochemistry and genetics of capsular polysaccharide production in bacteria,” Annual Review of Microbiology, vol. 50, pp. 285–315, 1996. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Merino and J. M. Tomás, “Bacterial capsules and evasion of immune responses,” in Encyclopedia of Life Sciences, John Wiley & Sons, New York, NY, USA, 3rd edition, 2010, http://www.els.net/. View at Publisher · View at Google Scholar
  31. Z. Wang, S. Larocque, E. Vinogradov et al., “Structural studies of the capsular polysaccharide and lipopolysaccharide O-antigen of Aeromonas salmonicida strain 80204-1 produced under in vitro and in vivo growth conditions,” European Journal of Biochemistry, vol. 271, no. 22, pp. 4507–4516, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. D. H. Shaw, Y. Z. Lee, M. J. Squires, and O. Luderitz, “Structural studies on the O-antigen of Aeromonas salmonicida,” European Journal of Biochemistry, vol. 131, no. 3, pp. 633–638, 1983. View at Scopus
  33. A. Garrote, R. Bonet, S. Merino, M. D. Simon-Pujol, and F. Congregado, “Occurrence of a capsule in Aeromonas salmonicida,” FEMS Microbiology Letters, vol. 74, no. 2-3, pp. 127–131, 1992. View at Scopus
  34. R. A. Garduño, J. C. Thornton, and W. W. Kay, “Aeromonas salmonicida grown in vivo,” Infection and Immunity, vol. 61, no. 9, pp. 3854–3862, 1993. View at Scopus
  35. S. Merino, S. Alberti, and J. M. Tomás, “Aeromonas salmonicida resistance to complement-mediated killing,” Infection and Immunity, vol. 62, no. 12, pp. 5483–5490, 1994. View at Scopus
  36. S. Merino, A. Aguilar, X. Rubires, D. Simon-Pujol, F. Congregado, and J. M. Tomás, “The role of the capsular polysaccharide of Aeromonas salmonicida in the adherence and invasion of fish cell lines,” FEMS Microbiology Letters, vol. 142, no. 2-3, pp. 185–189, 1996. View at Publisher · View at Google Scholar · View at Scopus
  37. M. J. Martínez, D. Simon-Pujol, F. Congregado, S. Merino, X. Rubires, and J. M. Tomás, “The presence of capsular polysaccharide in mesophilic Aeromonas hydrophila serotypes O:11 and O:34,” FEMS Microbiology Letters, vol. 128, no. 1, pp. 69–74, 1995. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. L. Zhang, E. Arakawa, and K. Y. Leung, “Novel Aeromonas hydrophila PPD134/91 genes involved in O-antigen and capsule biosynthesis,” Infection and Immunity, vol. 70, no. 5, pp. 2326–2335, 2002. View at Publisher · View at Google Scholar
  39. Y. L. Zhang, Y. L. Lau, E. Arakawa, and K. Y. Leung, “Detection and genetic analysis of group II capsules in Aeromonas hydrophila,” Microbiology, vol. 149, no. 4, pp. 1051–1060, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. A. S. Ghosh and K. D. Young, “Helical disposition of proteins and lipopolysaccharide in the outer membrane of Escherichia coli,” Journal of Bacteriology, vol. 187, no. 6, pp. 1913–1922, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Nikaido, “Outer membrane,” in Escherichia coli and Salmonella: Cellular and Molecular Biology, F. C. Neidhardt, R. Curtiss, J. L. Ingraham et al., Eds., pp. 29–47, ASM Press, Washington, DC, USA, 1996.
  42. C. Whitfield and M. A. Valvano, “Biosynthesis and expression of cell-surface polysaccharides in gram-negative bacteria,” Advances in Microbial Physiology, vol. 35, pp. 135–246, 1993. View at Scopus
  43. G. Pluschke, A. Mercer, and B. Kusecek, “Induction of bacteremia in newborn rats by Escherichia coli K1 is correlated with only certain O (lipopolysaccharide) antigen types,” Infection and Immunity, vol. 39, no. 2, pp. 599–608, 1983. View at Scopus
  44. G. Pluschke and M. Achtman, “Degree of antibody-independent activation of the classical complement pathway by K1 Escherichia coli differs with O antigen type and correlates with virulence of meningitis in newborns,” Infection and Immunity, vol. 43, no. 2, pp. 684–692, 1984. View at Scopus
  45. K. A. Joiner, “Complement evasion by bacteria and parasites,” Annual Review of Microbiology, vol. 42, pp. 201–230, 1988. View at Scopus
  46. C. R. H. Raetz and C. Whitfield, “Lipopolysaccharide endotoxins,” Annual Review of Biochemistry, vol. 71, pp. 635–700, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. G. Samuel and P. Reeves, “Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly,” Carbohydrate Research, vol. 338, no. 23, pp. 2503–2519, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. M. A. Valvano, “Export of O-specific lipopolysaccharide,” Frontiers in Bioscience, vol. 8, pp. s452–s471, 2003. View at Scopus
  49. M. A. Valvano, in Comprehensive Natural Products Chemistry II. Vol. 6: Carbohydrates, Nucleosides and Nucleic Acids, L. N. Mander and H. W. Liu, Eds., pp. 297–314, Elsevier, Oxford, UK, 2010.
  50. N. P. Price and F. A. Momany, “Modeling bacterial UDP-HexNAc: polyprenol-P HexNAc-1-P transferases,” Glycobiology, vol. 15, no. 9, pp. 29–42, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Merino, N. Jiménez, R. Molero, L. Bouamama, M. Regué, and J. M. Tomás, “A UDP-HexNAc:polyprenol-P GalNAc-1-P transferase (WecP) representing a new subgroup of the enzyme family,” Journal of Bacteriology, vol. 193, no. 8, pp. 1943–1952, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Cohen, “The immunopathogenesis of sepsis,” Nature, vol. 420, no. 6917, pp. 885–891, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. O. Lüderitz, C. Galanos, V. Lehmann, H. Mayer, E. T. Rietschel, and J. Weckesser, “Chemical structure and biological activities of lipid A's from various bacterial families,” Naturwissenschaften, vol. 65, no. 11, pp. 578–585, 1978. View at Publisher · View at Google Scholar · View at Scopus
  54. Z. Wang, J. Li, and E. Altman, “Structural characterization of the lipid A region of Aeromonas salmonicida subsp. salmonicida lipopolysaccharide,” Carbohydrate Research, vol. 341, no. 17, pp. 2816–2825, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Cuthbertson, V. Kos, and C. Whitfield, “ABC transporters involved in export of cell surface glycoconjugates,” Microbiology and Molecular Biology Reviews, vol. 74, no. 3, pp. 341–362, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. A. Knirel, E. Vinogradov, N. Jiménez, S. Merino, and J. M. Tomás, “Structural studies on the R-type lipopolysaccharide of Aeromonas hydrophila,” Carbohydrate Research, vol. 339, no. 4, pp. 787–793, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. Z. Wang, J. Li, E. Vinogradov, and E. Altman, “Structural studies of the core region of Aeromonas salmonicida subsp. salmonicida lipopolysaccharide,” Carbohydrate Research, vol. 341, no. 1, pp. 109–117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. N. Jiménez, R. Canals, A. Lacasta et al., “Molecular analysis of three Aeromonas hydrophila AH-3 (serotype O34) lipopolysaccharide core biosynthesis gene clusters,” Journal of Bacteriology, vol. 190, no. 9, pp. 3176–3184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Jiménez, A. Lacasta, S. Vilches et al., “Genetics and proteomics of Aeromonas salmonicida lipopolysaccharide core biosynthesis,” Journal of Bacteriology, vol. 191, no. 7, pp. 2228–2236, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. C. R. H. Raetz, “Bacterial lipopolysaccharides: a remarkable family of bioactive macroamphiphiles,” in Escherichia coli and Salmonella: Cellular and Molecular Biology, F. C. Neidhardt, R. Curtiss III, J. L. Ingraham et al., Eds., pp. 1035–1063, ASM Press, Washington, DC, USA, 2nd edition, 1996.
  61. R. Sakazaki and T. Shimada, “O-serogrouping scheme for mesophilic Aeromonas strains,” Japanese Journal of Medical Science and Biology, vol. 37, no. 5-6, pp. 247–255, 1984. View at Scopus
  62. L. V. Thomas, R. J. Gross, T. Cheasty, and B. Rowe, “Extended serogrouping scheme for motile, mesophilic Aeromonas species,” Journal of Clinical Microbiology, vol. 28, no. 5, pp. 980–984, 1990. View at Scopus
  63. J. M. Janda, S. L. Abbott, S. Khashe, G. H. Kellogg, and T. Shimada, “Further studies on biochemical characteristics and serologic properties of the genus Aeromonas,” Journal of Clinical Microbiology, vol. 34, no. 8, pp. 1930–1933, 1996. View at Scopus
  64. S. Merino, S. Camprubi, and J. M. Tomás, “Effect of growth temperature on outer membrane components and virulence of Aeromonas hydrophila strains of serotype O:34,” Infection and Immunity, vol. 60, no. 10, pp. 4343–4349, 1992. View at Scopus
  65. A. Aguilar, S. Merino, X. Rubires, and J. M. Tomás, “Influence of osmolarity on lipopolysaccharides and virulence of Aeromonas hydrophila serotype O:34 strains grown at 37°C,” Infection and Immunity, vol. 65, no. 4, pp. 1245–1250, 1997. View at Scopus
  66. S. Merino, X. Rubires, A. Aguilar et al., “Mesophilic Aeromonas sp. serogroup O:11 resistance to complement- mediated killing,” Infection and Immunity, vol. 64, no. 12, pp. 5302–5309, 1996. View at Scopus
  67. Y. A. Knirel, A. S. Shashkov, S. N. Senchenkova, S. Merino, and J. M. Tomás, “Structure of the O-polysaccharide of Aeromonas hydrophila O:34; A case of random O-acetylation of 6-deoxy-L-talose,” Carbohydrate Research, vol. 337, no. 15, pp. 1381–1386, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. Z. Wang, E. Vinogradov, S. Larocque, B. A. Harrison, J. Li, and E. Altman, “Structural and serological characterization of the O-chain polysaccharide of Aeromonas salmonicida strains A449, 80204 and 80204-1,” Carbohydrate Research, vol. 340, no. 4, pp. 693–700, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. J. S. G. Dooley, R. Lallier, D. H. Shaw, and T. J. Trust, “Electrophoretic and immunochemical analyses of the lipopolysaccharides from various strains of Aeromonas hydrophila,” Journal of Bacteriology, vol. 164, no. 1, pp. 263–269, 1985. View at Scopus
  70. Z. Wang, X. Liu, J. Li, and E. Altman, “Structural characterization of the O-chain polysaccharide of Aeromonas caviae ATCC 15468 lipopolysaccharide,” Carbohydrate Research, vol. 343, no. 3, pp. 483–488, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. N. Jiménez, R. Canals, M. T. Saló, S. Vilches, S. Merino, and J. M. Tomás, “The Aeromonas hydrophila  wb*O34 gene cluster: genetics and temperature regulation,” Journal of Bacteriology, vol. 190, no. 12, pp. 4198–4209, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. B. Beutler, K. Hoebe, X. Du, and R. J. Ulevitch, “How we detect microbes and respond to them: the Toll-like receptors and their transducers,” Journal of Leukocyte Biology, vol. 74, no. 4, pp. 479–485, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Gumenscheimer, I. Mitov, C. Galanos, and M. A. Freudenberg, “Beneficial or deleterious effects of a preexisting hypersensitivity to bacterial components on the course and outcome of infection,” Infection and Immunity, vol. 70, no. 10, pp. 5596–5603, 2002. View at Publisher · View at Google Scholar · View at Scopus
  74. Y. Nagai, S. Akashi, M. Nagafuku et al., “Essential role of MD-2 in LPS responsiveness and TLR4 distribution,” Nature Immunology, vol. 3, no. 7, pp. 667–672, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. L. Hamann, C. Alexander, C. Stamme, U. Zähringer, and R. R. Schumann, “Acute-phase concentrations of lipopolysaccharide (LPS)-binding protein inhibit innate immune cell activation by different LPS chemotypes via different mechanisms,” Infection and Immunity, vol. 73, no. 1, pp. 193–200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. Z. Jiang, P. Georgel, X. Du et al., “CD14 is required for MyD88-independent LPS signaling,” Nature Immunology, vol. 6, no. 6, pp. 565–570, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Caroff and D. Karibian, “Structure of bacterial lipopolysaccharides,” Carbohydrate Research, vol. 338, no. 23, pp. 2431–2447, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Kapp, M. Freudenberg, and C. Galanos, “Induction of human granulocyte chemiluminescence by bacterial lipopolysaccharides,” Infection and Immunity, vol. 55, no. 3, pp. 758–761, 1987. View at Scopus
  79. M. A. Freudenberg and C. Galanos, “Metabolism of LPS in vivo,” in Bacterial Endotoxic Lipopolysaccharides, Immunopharmacology and Pathophysiology, J. L. Ryan and D. C. Morrison, Eds., pp. 275–294, CRC Press, Boca Raton, Fla, USA, 1992.
  80. D. C. Morrison, “Bacterial endotoxins and pathogenesis,” Reviews of Infectious Diseases, vol. 5, pp. S733–S747, 1983. View at Scopus
  81. S. Merino, X. Rubires, S. Knochel, and J. M. Tomás, “Emerging pathogens: Aeromonas spp.,” International Journal of Food Microbiology, vol. 28, no. 2, pp. 157–168, 1995. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Albertí, D. Álvarez, S. Merino et al., “Analysis of complement C3 deposition and degradation on Klebsiella pneumoniae,” Infection and Immunity, vol. 64, no. 11, pp. 4726–4732, 1996. View at Scopus
  83. H. M. Kuhn, U. Meier-Dieter, and H. Mayer, “ECA, the enterobacterial common antigen,” FEMS Microbiology Reviews, vol. 54, no. 3, pp. 195–222, 1988. View at Scopus
  84. C. Whitfield, “Biosynthesis and assembly of capsular polysaccharides in Escherichia coli,” Annual Review of Biochemistry, vol. 75, pp. 39–68, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. W. D. Grant, I. W. Sutherland, and J. F. Wilkinson, “Exopolysaccharide colanic acid and its occurrence in the Enterobacteriaceae,” Journal of Bacteriology, vol. 100, no. 3, pp. 1187–1193, 1969. View at Scopus
  86. X. Wang, J. F. Preston III, and T. Romeo, “The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation,” Journal of Bacteriology, vol. 186, no. 9, pp. 2724–2734, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. X. Zogaj, M. Nimtz, M. Rohde, W. Bokranz, and U. Römling, “The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix,” Molecular Microbiology, vol. 39, no. 6, pp. 1452–1463, 2001. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Merino, L. Bouamama, Y. A. Knirel, S. N. Senchenkova, M. Regué, and J. M. Tomás, “Aeromonas surface glucan attached through the O-Antigen ligase represents a new way to obtain UDP-Glucose,” PLoS ONE, vol. 7, no. 5, article e35707, 2012. View at Publisher · View at Google Scholar · View at Scopus
  89. K. Agladze, X. Wang, and T. Romeo, “Spatial periodicity of Escherichia coli K-12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA,” Journal of Bacteriology, vol. 187, no. 24, pp. 8237–8246, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. I. W. Sutherland, “Biofilm exopolysaccharides: a strong and sticky framework,” Microbiology, vol. 147, no. 1, pp. 3–9, 2001. View at Scopus
  91. J. Kumari and P. K. Sahoo, “Dietary β-1,3 glucan potentiates innate immunity and disease resistance of Asian catfish, Clarias batrachus (L.),” Journal of Fish Diseases, vol. 29, no. 2, pp. 95–101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. I. Rodríguez, R. Chamorro, B. Novoa, and A. Figueras, “β-Glucan administration enhances disease resistance and some innate immune responses in zebrafish (Danio rerio),” Fish and Shellfish Immunology, vol. 27, no. 2, pp. 369–373, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. T. J. Beveridge, P. H. Pouwels, M. Sara, et al., “Functions of S-layers,” FEMS Microbiology Reviews, vol. 20, pp. 99–149, 1997. View at Publisher · View at Google Scholar
  94. W. W. Kay, J. T. Buckley, E. E. Ishiguro, B. M. Phipps, J. P. Monette, and T. J. Trust, “Purification and disposition of a surface protein associated with virulence of Aeromonas salmonicida,” Journal of Bacteriology, vol. 147, no. 3, pp. 1077–1084, 1981. View at Scopus
  95. W. W. Kay, B. M. Phipps, E. E. Ishiguro, and T. J. Trust, “Surface layer virulence A-proteins from Aeromonas salmonicida strains,” Canadian Journal of Biochemistry and Cell Biology, vol. 62, no. 11, pp. 1064–1071, 1984. View at Scopus
  96. R. J. Belland and T. J. Trust, “Cloning of the gene for the surface array protein of Aeromonas salmonicida and evidence linking loss of expression with genetic deletion,” Journal of Bacteriology, vol. 169, no. 9, pp. 4086–4091, 1987. View at Scopus
  97. J. S. Dooley and T. J. Trust, “Surface protein composition of Aeromonas hydrophila strains virulent for fish: identification of a surface array protein,” Journal of Bacteriology, vol. 170, no. 2, pp. 499–506, 1988. View at Scopus
  98. B. Noonan and T. J. Trust, “The synthesis, secretion and role in virulence of the paracrystalline surface protein layers of Aeromonas salmonicida and A. hydrophila,” FEMS Microbiology Letters, vol. 154, no. 1, pp. 1–7, 1997. View at Publisher · View at Google Scholar · View at Scopus
  99. C. Esteve, E. Alcaide, R. Canals et al., “Pathogenic Aeromonas hydrophila serogroup O:14 and O:81 strains with an S layer,” Applied and Environmental Microbiology, vol. 70, no. 10, pp. 5898–5904, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. S. Chu, S. Cavaignac, J. Feutrier et al., “Structure of the tetragonal surface virulence array protein and gene of Aeromonas salmonicida,” The Journal of Biological Chemistry, vol. 266, no. 23, pp. 15258–15265, 1991. View at Scopus
  101. W. W. Kay, B. M. Phipps, E. E. Ishiguro, and T. J. Trust, “Porphyrin binding by the surface array virulence protein of Aeromonas salmonicida,” Journal of Bacteriology, vol. 164, no. 3, pp. 1332–1336, 1985. View at Scopus
  102. B. M. Phipps and W. W. Kay, “Immunoglobulin binding by the regular surface array of Aeromonas salmonicida,” The Journal of Biological Chemistry, vol. 263, no. 19, pp. 9298–9303, 1988. View at Scopus
  103. P. Messner, K. Steiner, K. Zarschler, and C. Schäffer, “S-layer nanoglycobiology of bacteria,” Carbohydrate Research, vol. 343, no. 12, pp. 1934–1951, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. C. Schäffer and P. Messner, “Surface-layer glycoproteins: an example for the diversity of bacterial glycosylation with promising impacts on nanobiotechnology,” Glycobiology, vol. 14, no. 8, pp. 31–42, 2004. View at Publisher · View at Google Scholar · View at Scopus
  105. P. Messner, “Prokaryotic glycoproteins: unexplored but important,” Journal of Bacteriology, vol. 186, no. 9, pp. 2517–2519, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. R. P. Kokka, N. A. Vedros, and J. M. Janda, “Electrophoretic analysis of the surface components of autoagglutinating surface array protein-positive and surface array protein-negative Aeromonas hydrophila and Aeromonas sobria,” Journal of Clinical Microbiology, vol. 28, no. 10, pp. 2240–2247, 1990. View at Scopus
  107. K. G. Wooldridge and P. H. Williams, “Iron uptake mechanisms of pathogenic bacteria,” FEMS Microbiology Reviews, vol. 12, no. 4, pp. 325–348, 1993. View at Publisher · View at Google Scholar · View at Scopus
  108. A. Stintzi and K. N. Raymond, “Amonabactin-mediated iron acquisition from transferrin and lactoferrin by Aeromonas hydrophila: direct measurement of individual microscopic rate constants,” Journal of Biological Inorganic Chemistry, vol. 5, no. 1, pp. 57–66, 2000. View at Scopus
  109. B. R. Beyers, G. Massad, S. Barghouthi, and J. E. L. Arceneaux, “Iron acquisition and virulence in the motile aeromonads: siderophore-dependent and -independent systems,” Experientia, vol. 47, no. 5, pp. 416–418, 1991. View at Scopus
  110. J. R. Telford and K. N. Raymond, “Coordination chemistry of the amonabactins, Bis(catecholate) siderophores from Aeromonas hydrophila,” Inorganic Chemistry, vol. 37, no. 18, pp. 4578–4583, 1998. View at Scopus
  111. G. Massad, J. E. L. Arceneaux, and B. R. Byers, “Diversity of siderophore genes encoding biosynthesis of 2,3- dihydroxybenzoic acid in Aeromonas spp,” BioMetals, vol. 7, no. 3, pp. 227–236, 1994. View at Scopus
  112. M. Najimi, M. L. Lemos, and C. R. Osorio, “Identification of iron regulated genes in the fish pathogen Aeromonas salmonicida subsp. salmonicida: genetic diversity and evidence of conserved iron uptake systems,” Veterinary Microbiology, vol. 133, no. 4, pp. 377–382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. R. O. Ebanks, A. Dacanay, M. Goguen, D. M. Pinto, and N. W. Ross, “Differential proteomic analysis of Aeromonas salmonicida outer membrane proteins in response to low iron and in vivo growth conditions,” Proteomics, vol. 4, no. 4, pp. 1074–1085, 2004. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Najimi, M. L. Lemos, and C. R. Osorio, “Identification of heme uptake genes in the fish pathogen Aeromonas salmonicida subsp. salmonicida,” Archives of Microbiology, vol. 190, no. 4, pp. 439–449, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. V. Braun, “Bacterial iron transport related to virulence,” Contributions to Microbiology, vol. 12, pp. 210–233, 2005. View at Scopus
  116. V. De Lorenzo, S. Wee, M. Herrero, and J. B. Neilands, “Operator sequences of the aerobactin operon of plasmid colV-K30 binding the ferric uptake regulation (fur) repressor,” Journal of Bacteriology, vol. 169, no. 6, pp. 2624–2630, 1987. View at Scopus
  117. I. D. Hirst and A. E. Ellis, “Iron-regulated outer membrane proteins of Aeromonas salmonicida are important protective antigens in Atlantic salmon against furunculosis,” Fish and Shellfish Immunology, vol. 4, no. 1, pp. 29–45, 1994. View at Publisher · View at Google Scholar · View at Scopus
  118. T. Asao, Y. Kinoshita, S. Kozaki, T. Uemura, and G. Sakaguchi, “Purification and some properties of Aeromonas hydrophila hemolysin,” Infection and Immunity, vol. 46, no. 1, pp. 122–127, 1984. View at Scopus
  119. A. K. Chopra and C. W. Houston, “Enterotoxins in Aeromonas-associated gastroenteritis,” Microbes and Infection, vol. 1, no. 13, pp. 1129–1137, 1999. View at Publisher · View at Google Scholar · View at Scopus
  120. M. R. Ferguson, X. J. Xu, C. W. Houston et al., “Hyperproduction, purification, and mechanism of action of the cytotoxic enterotoxin produced by Aeromonas hydrophila,” Infection and Immunity, vol. 65, no. 10, pp. 4299–4308, 1997. View at Scopus
  121. X. J. Xu, M. R. Ferguson, V. L. Popov, C. W. Houston, J. W. Peterson, and A. K. Chopra, “Role of a cytotoxic enterotoxin in Aeromonas-mediated infections: development of transposon and isogenic mutants,” Infection and Immunity, vol. 66, no. 8, pp. 3501–3509, 1998. View at Scopus
  122. C. L. Galindo, C. Gutierrez Jr., and A. K. Chopra, “Potential involvement of galectin-3 and SNAP23 in Aeromonas hydrophila cytotoxic enterotoxin-induced host cell apoptosis,” Microbial Pathogenesis, vol. 40, no. 2, pp. 56–68, 2006. View at Publisher · View at Google Scholar · View at Scopus
  123. S. P. Howard and J. T. Buckley, “Molecular cloning and expression in Escherichia coli of the structural gene for the hemolytic toxin aerolysin from Aeromonas hydrophila,” MGG Molecular & General Genetics, vol. 204, no. 2, pp. 289–295, 1986. View at Publisher · View at Google Scholar · View at Scopus
  124. J. T. Buckley, S. P. Howard, A. K. Chopra, and C. W. Houston, “The cytotoxic enterotoxin of Aeromonas hydrophila is aerolysin (multiple letters),” Infection and Immunity, vol. 67, no. 1, pp. 466–467, 1999. View at Scopus
  125. N. Tanoue, A. Takahashi, K. Okamoto et al., “A pore-forming toxin produced by Aeromonas sobria activates cAMP-dependent C1-secretory pathways to cause diarrhea,” FEMS Microbiology Letters, vol. 242, no. 2, pp. 195–201, 2005. View at Publisher · View at Google Scholar
  126. J. Sha, E. V. Kozlova, and A. K. Chopra, “Role of various enterotoxins in Aeromonas hydrophila-induced gastroenteritis: generation of enterotoxin gene-deficient mutants and evaluation of their enterotoxic activity,” Infection and Immunity, vol. 70, no. 4, pp. 1924–1935, 2002. View at Publisher · View at Google Scholar · View at Scopus
  127. A. K. Chopra, X. J. Xu, D. Ribardo et al., “The cytotoxic enterotoxin of Aeromonas hydrophila induces proinflammatory cytokine production and activates arachidonic acid metabolism in macrophages,” Infection and Immunity, vol. 68, no. 5, pp. 2808–2818, 2000. View at Publisher · View at Google Scholar · View at Scopus
  128. R. Shenkar and E. Abraham, “Mechanisms of lung neutrophil activation after hemorrhage or endotoxemia: roles of reactive oxygen intermediates, NF-κB, and cyclic AMP response element binding protein,” Journal of Immunology, vol. 163, no. 2, pp. 954–962, 1999. View at Scopus
  129. S. P. Howard, W. J. Garland, M. J. Green, and J. T. Buckley, “Nucleotide sequence of the gene for the hole-forming toxin aerolysin of Aeromonas hydrophila,” Journal of Bacteriology, vol. 169, no. 6, pp. 2869–2871, 1987. View at Scopus
  130. T. Chakraborty, M. A. Montenegro, S. C. Sanyal, et al., “Cloning of enterotoxin gene from Aeromonas hydrophila provides conclusive evidence of production of a cytotonic enterotoxin,” Infection and Immunity, vol. 46, no. 2, pp. 435–441, 1984. View at Scopus
  131. J. Potomski, V. Burke, J. Robinson, D. Fumarola, and G. Miragliotta, “Aeromonas cytotonic enterotoxin cross reactive with cholera toxin,” Journal of Medical Microbiology, vol. 23, no. 2, pp. 179–186, 1987. View at Scopus
  132. M. Thelestam and A. Ljungh, “Membrane-damaging and cytotoxic effects on human fibroblasts of alpha- and beta-hemolysins from Aeromonas hydrophila,” Infection and Immunity, vol. 34, no. 3, pp. 949–956, 1981. View at Scopus
  133. K. Y. Leung and R. M. W. Stevenson, “Tn5-induced protease-deficient strains of Aeromonas hydrophila with reduced virulence for fish,” Infection and Immunity, vol. 56, no. 10, pp. 2639–2644, 1988. View at Scopus
  134. J. M. Pemberton, S. P. Kidd, and R. Schmidt, “Secreted enzymes of Aeromonas,” FEMS Microbiology Letters, vol. 152, no. 1, pp. 1–10, 1997. View at Publisher · View at Google Scholar · View at Scopus
  135. Y. C. Chuang, S. F. Chiou, J. H. Su, M. L. Wu, and M. C. Chang, “Molecular analysis and expression of the extracellular lipase of Aeromonas hydrophila MCC-2,” Microbiology, vol. 143, no. 3, pp. 803–812, 1997. View at Scopus
  136. S. Merino, A. Aguilar, M. M. Nogueras, M. Regue, S. Swift, and J. M. Tomás, “Cloning, sequencing, and role in virulence of two phospholipases (A1 and C) from mesophilic Aeromonas sp. serogroup O:34,” Infection and Immunity, vol. 67, no. 8, pp. 4008–4013, 1999. View at Scopus
  137. I. R. Henderson, F. Navarro-Garcia, M. Desvaux, R. C. Fernandez, and D. Ala'Aldeen, “Type V protein secretion pathway: the autotransporter story,” Microbiology and Molecular Biology Reviews, vol. 68, no. 4, pp. 692–744, 2004. View at Publisher · View at Google Scholar · View at Scopus
  138. M. Kostakioti, C. L. Newman, D. G. Thanassi, and C. Stathopoulos, “Mechanisms of protein export across the bacterial outer membrane,” Journal of Bacteriology, vol. 187, no. 13, pp. 4306–4314, 2005. View at Publisher · View at Google Scholar · View at Scopus
  139. T. Palmer and B. C. Berks, “Moving folded proteins across the bacterial cell membrane,” Microbiology, vol. 149, no. 3, pp. 547–556, 2003. View at Publisher · View at Google Scholar · View at Scopus
  140. T. Michiels, P. Wattiau, R. Brasseur, J. M. Ruysschaert, and G. Cornelis, “Secretion of Yop proteins by yersiniae,” Infection and Immunity, vol. 58, no. 9, pp. 2840–2849, 1990. View at Scopus
  141. J. E. Galán and A. Collmer, “Type III secretion machines: bacterial devices for protein delivery into host cells,” Science, vol. 284, no. 5418, pp. 1322–1328, 1999. View at Publisher · View at Google Scholar · View at Scopus
  142. C. J. Hueck, “Type III protein secretion systems in bacterial pathogens of animals and plants,” Microbiology and Molecular Biology Reviews, vol. 62, no. 2, pp. 379–433, 1998. View at Scopus
  143. S. A. Lloyd, M. Norman, R. Rosqvist, and H. Wolf-Watz, “Yersinia YopE is targeted for type III secretion by N-terminal, not mRNA, signals,” Molecular Microbiology, vol. 39, no. 2, pp. 520–531, 2001. View at Publisher · View at Google Scholar · View at Scopus
  144. S. E. Burr, K. Stuber, T. Wahli, and J. Frey, “Evidence for a type III secretion system in Aeromonas salmonicida subsp. salmonicida,” Journal of Bacteriology, vol. 184, no. 21, pp. 5966–5970, 2002. View at Publisher · View at Google Scholar · View at Scopus
  145. H. B. Yu, P. S. S. Rao, H. C. Lee et al., “A type III secretion system is required for Aeromonas hydrophila AH-1 pathogenesis,” Infection and Immunity, vol. 72, no. 3, pp. 1248–1256, 2004. View at Publisher · View at Google Scholar · View at Scopus
  146. S. Vilches, C. Urgell, S. Merino et al., “Complete type III secretion system of a mesophilic Aeromonas hydrophila strain,” Applied and Environmental Microbiology, vol. 70, no. 11, pp. 6914–6919, 2004. View at Publisher · View at Google Scholar · View at Scopus
  147. J. Sha, L. Pillai, A. A. Fadl, C. L. Galindo, T. E. Erova, and A. K. Chopra, “The type III secretion system and cytotoxic enterotoxin alter the virulence of Aeromonas hydrophila,” Infection and Immunity, vol. 73, no. 10, pp. 6446–6457, 2005. View at Publisher · View at Google Scholar · View at Scopus
  148. S. E. Burr, K. Stuber, and J. Frey, “The ADP-ribosylating toxin, AexT, from Aeromonas salmonicida subsp. salmonicida is translocated via a type III secretion pathway,” Journal of Bacteriology, vol. 185, no. 22, pp. 6583–6591, 2003. View at Publisher · View at Google Scholar · View at Scopus
  149. D. Fehr, C. Casanova, A. Liverman et al., “AopP, a type III effector protein of Aeromonas salmonicida, inhibits the NF-κB signalling pathway,” Microbiology, vol. 152, no. 9, pp. 2809–2818, 2006. View at Publisher · View at Google Scholar · View at Scopus
  150. D. Fehr, S. E. Burr, M. Gibert, J. D'Alayer, J. Frey, and M. R. Popoff, “Aeromonas exoenzyme T of Aeromonas salmonicida is a bifunctional protein that targets the host cytoskeleton,” The Journal of Biological Chemistry, vol. 282, no. 39, pp. 28843–28852, 2007. View at Publisher · View at Google Scholar · View at Scopus
  151. S. Vilches, M. Wilhelms, H. B. Yu, K. Y. Leung, J. M. Tomás, and S. Merino, “Aeromonas hydrophila AH-3 AexT is an ADP-ribosylating toxin secreted through the type III secretion system,” Microbial Pathogenesis, vol. 44, no. 1, pp. 1–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  152. J. Sha, S. F. Wang, G. Suarez et al., “Further characterization of a type III secretion system (T3SS) and of a new effector protein from a clinical isolate of Aeromonas hydrophila-part I,” Microbial Pathogenesis, vol. 43, no. 4, pp. 127–146, 2007. View at Publisher · View at Google Scholar · View at Scopus
  153. S. Pukatzki, A. T. Ma, D. Sturtevant et al., “Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 5, pp. 1528–1533, 2006. View at Publisher · View at Google Scholar · View at Scopus
  154. S. Pukatzki, A. T. Ma, A. T. Revel, D. Sturtevant, and J. J. Mekalanos, “Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 39, pp. 15508–15513, 2007. View at Publisher · View at Google Scholar · View at Scopus
  155. S. Pukatzki, S. B. McAuley, and S. T. Miyata, “The type VI secretion system: translocation of effectors and effector-domains,” Current Opinion in Microbiology, vol. 12, no. 1, pp. 11–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  156. S. Schwarz, R. D. Hood, and J. D. Mougous, “What is type VI secretion doing in all those bugs?” Trends in Microbiology, vol. 18, no. 12, pp. 531–537, 2010. View at Publisher · View at Google Scholar · View at Scopus
  157. C. S. Bernard, Y. R. Brunet, E. Gueguen, and E. Cascales, “Nooks and crannies in type VI secretion regulation,” Journal of Bacteriology, vol. 192, no. 15, pp. 3850–3860, 2010. View at Publisher · View at Google Scholar · View at Scopus
  158. G. Suarez, J. C. Sierra, J. Sha et al., “Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila,” Microbial Pathogenesis, vol. 44, no. 4, pp. 344–361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  159. S. Han, J. A. Craig, C. D. Putnam, N. B. Carozzi, and J. A. Tainer, “Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex,” Nature Structural Biology, vol. 6, no. 10, pp. 932–936, 1999. View at Publisher · View at Google Scholar · View at Scopus
  160. V. Burke, M. Cooper, and J. Robinson, “Hemagglutination patterns of Aeromonas spp. in relation to biotype and source,” Journal of Clinical Microbiology, vol. 19, no. 1, pp. 39–43, 1984. View at Scopus
  161. T. Proft and E. N. Baker, “Pili in Gram-negative and Gram-positive bacteria—structure, assembly and their role in disease,” Cellular and Molecular Life Sciences, vol. 66, no. 4, pp. 613–635, 2009. View at Publisher · View at Google Scholar · View at Scopus
  162. S. M. Kirov, I. Jacobs, L. J. Hayward, and R. H. Hapin, “Electron microscopic examination of factors influencing the expression of filamentous surface structures on clinical and environmental isolates of Aeromonas veronii biotype sobria,” Microbiology and Immunology, vol. 39, no. 5, pp. 329–338, 1995. View at Scopus
  163. C. M. Pepe, M. W. Eklund, and M. S. Strom, “Cloning of an Aeromonas hydrophila type IV pilus biogenesis gene cluster: complementation of pilus assembly functions and characterization of a type IV leader peptidase/N-methyltransferase required for extracellular protein secretion,” Molecular Microbiology, vol. 19, no. 4, pp. 857–869, 1996. View at Scopus
  164. T. C. Barnett, S. M. Kirov, M. S. Strom, and K. Sanderson, “Aeromonas spp. possess at least two distinct type IV pilus families,” Microbial Pathogenesis, vol. 23, no. 4, pp. 241–247, 1997. View at Publisher · View at Google Scholar · View at Scopus
  165. S. M. Kirov, T. C. Barnett, C. M. Pepe, M. S. Strom, and M. John Albert, “Investigation of the role of type IV Aeromonas pilus (Tap) in the pathogenesis of Aeromonas gastrointestinal infection,” Infection and Immunity, vol. 68, no. 7, pp. 4040–4048, 2000. View at Publisher · View at Google Scholar · View at Scopus
  166. N. Hadi, Q. Yang, T. C. Barnett, S. M. B. Tabei, S. M. Kirov, and J. G. Shaw, “Bundle-forming pilus locus of Aeromonas veronii bv. Sobria,” Infection and Immunity, vol. 80, no. 4, pp. 1351–1360, 2012. View at Publisher · View at Google Scholar · View at Scopus
  167. J. M. Boyd, A. Dacanay, L. C. Knickle et al., “Contribution of type IV pili to the virulence of Aeromonas salmonicida subsp. salmonicida in Atlantic salmon (Salmo salar L.),” Infection and Immunity, vol. 76, no. 4, pp. 1445–1455, 2008. View at Publisher · View at Google Scholar · View at Scopus
  168. D. M. Quinn, H. M. Atkinson, A. H. Bretag et al., “Carbohydrate-reactive, pore-forming outer membrane proteins of Aeromonas hydrophila,” Infection and Immunity, vol. 62, no. 9, pp. 4054–4058, 1994. View at Scopus
  169. S. Merino and J. M. Tomás, “Lateral flagella systems,” in Pili and Flagella: Current Research and Future Trends, pp. 173–190, Caister Academic Press, Norfolk, UK, 2009.
  170. R. M. Macnab, “How bacteria assemble flagella,” Annual Review of Microbiology, vol. 57, pp. 77–100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  171. L. L. McCarter, “Polar flagellar motility of the Vibrionaceae,” Microbiology and Molecular Biology Reviews, vol. 65, no. 3, pp. 445–462, 2001. View at Publisher · View at Google Scholar · View at Scopus
  172. A. A. Rabaan, I. Gryllos, J. M. Tomás, and J. G. Shaw, “Motility and the polar flagellum are required for Aeromonas caviae adherence to HEp-2 cells,” Infection and Immunity, vol. 69, no. 7, pp. 4257–4267, 2001. View at Publisher · View at Google Scholar · View at Scopus
  173. R. Gavín, A. A. Rabaan, S. Merino, J. M. Tomás, I. Gryllos, and J. G. Shaw, “Lateral flagella of Aeromonas species are essential for epithelial cell adherence and biofilm formation,” Molecular Microbiology, vol. 43, no. 2, pp. 383–397, 2002. View at Publisher · View at Google Scholar · View at Scopus
  174. R. Canals, S. Ramirez, S. Vilches et al., “Polar flagellum biogenesis in Aeromonas hydrophila,” Journal of Bacteriology, vol. 188, no. 2, pp. 542–555, 2006. View at Publisher · View at Google Scholar · View at Scopus
  175. H. C. Berg, “The rotary motor of bacterial flagella,” Annual Review of Biochemistry, vol. 72, pp. 19–54, 2003. View at Publisher · View at Google Scholar · View at Scopus
  176. H. Terashima, H. Fukuoka, T. Yakushi, S. Kojima, and M. Homma, “The Vibrio motor proteins, MotX and MotY, are associated with the basal body of Na+-driven flagella and required for stator formation,” Molecular Microbiology, vol. 62, no. 4, pp. 1170–1180, 2006. View at Publisher · View at Google Scholar · View at Scopus
  177. M. Wilhelms, S. Vilches, R. Molero, J. G. Shaw, J. M. Tomás, and S. Merino, “Two redundant sodium-driven stator motor proteins are involved in Aeromonas hydrophila polar flagellum rotation,” Journal of Bacteriology, vol. 191, no. 7, pp. 2206–2217, 2009. View at Publisher · View at Google Scholar · View at Scopus
  178. A. V. Karlyshev, D. Linton, N. A. Gregson, and B. W. Wren, “A novel paralogous gene family involved in phase-variable flagella-mediated motility in Campylobacter jejuni,” Microbiology, vol. 148, no. 2, pp. 473–480, 2002. View at Scopus
  179. R. Molero, M. Wilhelms, B. Infanzón, J. M. Tomás, and S. Merino, “Aeromonas hydrophila motY is essential for polar flagellum function, and requires coordinate expression of motX and Pom proteins,” Microbiology, vol. 157, no. 10, pp. 2772–2784, 2011. View at Publisher · View at Google Scholar · View at Scopus
  180. B. J. Stewart and L. L. McCarter, “Lateral flagellar gene system of Vibrio parahaemolyticus,” Journal of Bacteriology, vol. 185, no. 15, pp. 4508–4518, 2003. View at Publisher · View at Google Scholar · View at Scopus
  181. R. Canals, M. Altarriba, S. Vilches et al., “Analysis of the lateral flagellar gene system of Aeromonas hydrophila AH-3,” Journal of Bacteriology, vol. 188, no. 3, pp. 852–862, 2006. View at Publisher · View at Google Scholar · View at Scopus
  182. G. S. Chilcott and K. T. Hughes, “Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli,” Microbiology and Molecular Biology Reviews, vol. 64, no. 4, pp. 694–708, 2000. View at Publisher · View at Google Scholar · View at Scopus
  183. N. Dasgupta, M. C. Wolfgang, A. L. Goodman et al., “A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa,” Molecular Microbiology, vol. 50, no. 3, pp. 809–824, 2003. View at Publisher · View at Google Scholar · View at Scopus
  184. Y. K. Kim and L. L. McCarter, “Cross-regulation in Vibrio parahaemolyticus: compensatory activation of polar flagellar genes by the lateral flagellar regulator LafK,” Journal of Bacteriology, vol. 186, no. 12, pp. 4014–4018, 2004. View at Publisher · View at Google Scholar · View at Scopus
  185. M. Wilhelms, R. Molero, J. G. Shaw, J. M. Tomás, and S. Merino, “Transcriptional hierarchy of Aeromonas hydrophila polar-flagellum genes,” Journal of Bacteriology, vol. 193, no. 19, pp. 5179–5190, 2011. View at Publisher · View at Google Scholar · View at Scopus
  186. K. A. Syed, S. Beyhan, N. Correa et al., “The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors,” Journal of Bacteriology, vol. 191, no. 21, pp. 6555–6570, 2009. View at Publisher · View at Google Scholar · View at Scopus
  187. H. C. Ramos, M. Rumbo, and J. C. Sirard, “Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa,” Trends in Microbiology, vol. 12, no. 11, pp. 509–517, 2004. View at Publisher · View at Google Scholar · View at Scopus
  188. E. P. Lillehoj, B. T. Kim, and K. C. Kim, “Identification of Pseudomonas aeruginosa flagellin as an adhesin for Muc1 mucin,” American Journal of Physiology, vol. 282, no. 4, pp. L751–L756, 2002. View at Scopus
  189. J. A. Girón, A. G. Torres, E. Freer, and J. B. Kaper, “The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells,” Molecular Microbiology, vol. 44, no. 2, pp. 361–379, 2002. View at Publisher · View at Google Scholar · View at Scopus
  190. F. Hayashi, K. D. Smith, A. Ozinsky et al., “The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5,” Nature, vol. 410, no. 6832, pp. 1099–1103, 2001. View at Publisher · View at Google Scholar · View at Scopus
  191. A. Verma, S. K. Arora, S. K. Kuravi, and R. Ramphal, “Roles of specific amino acids in the N terminus of Pseudomonas aeruginosa flagellin and of flagellin glycosylation in the innate immune response,” Infection and Immunity, vol. 73, no. 12, pp. 8237–8246, 2005. View at Publisher · View at Google Scholar · View at Scopus
  192. R. Apweiler, H. Hermjakob, and N. Sharon, “On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database,” Biochimica et Biophysica Acta, vol. 1473, no. 1, pp. 4–8, 1999. View at Publisher · View at Google Scholar · View at Scopus
  193. S. Moens and J. Vanderleyden, “Glycoproteins in prokaryotes,” Archives of Microbiology, vol. 168, no. 3, pp. 169–175, 1997. View at Publisher · View at Google Scholar · View at Scopus
  194. M. F. Mescher and J. L. Strominger, “Purification and characterization of a prokaryotic glycoprotein from the cell envelope of Halobacterium salinarium,” The Journal of Biological Chemistry, vol. 251, no. 7, pp. 2005–2014, 1976. View at Scopus
  195. U. B. Sleytr, “Heterologous reattachment of regular arrays of glycoproteins on bacterial surfaces,” Nature, vol. 257, no. 5525, pp. 400–402, 1975. View at Scopus
  196. U. B. Sleytr and K. J. I. Thorne, “Chemical characterization of the regularly arranged surface layers of Clostridium thermosaccharolyticum and Clostridium thermohydrosulfuricum,” Journal of Bacteriology, vol. 126, no. 1, pp. 377–383, 1976. View at Scopus
  197. S. M. Logan, “Flagellar glycosylation—a new component of the motility repertoire?” Microbiology, vol. 152, no. 5, pp. 1249–1262, 2006. View at Publisher · View at Google Scholar · View at Scopus
  198. C. M. Szymanski, Y. Ruijin, C. P. Ewing, T. J. Trust, and P. Guerry, “Evidence for a system of general protein glycosylation in Campylobacter jejuni,” Molecular Microbiology, vol. 32, no. 5, pp. 1022–1030, 1999. View at Publisher · View at Google Scholar · View at Scopus
  199. H. Nothaft and C. M. Szymanski, “Protein glycosylation in bacteria: sweeter than ever,” Nature Reviews Microbiology, vol. 8, no. 11, pp. 765–778, 2010. View at Publisher · View at Google Scholar · View at Scopus
  200. F. A. Samatey, K. Imada, S. Nagashima et al., “Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling,” Nature, vol. 410, no. 6826, pp. 331–337, 2001. View at Publisher · View at Google Scholar · View at Scopus
  201. D. J. McNally, J. P. M. Hui, A. J. Aubry et al., “Functional characterization of the flagellar glycosylation locus in Campylobacter jejuni 81-176 using a focused metabolomics approach,” The Journal of Biological Chemistry, vol. 281, no. 27, pp. 18489–18498, 2006. View at Publisher · View at Google Scholar · View at Scopus
  202. S. M. Logan, J. P. M. Hui, E. Vinogradov et al., “Identification of novel carbohydrate modifications on Campylobacter jejuni 11168 flagellin using metabolomics-based approaches,” FEBS Journal, vol. 276, no. 4, pp. 1014–1023, 2009. View at Publisher · View at Google Scholar · View at Scopus
  203. C. M. Szymanski, S. M. Logan, D. Linton, and B. W. Wren, “Campylobacter—a tale of two protein glycosylation systems,” Trends in Microbiology, vol. 11, no. 5, pp. 233–238, 2003. View at Publisher · View at Google Scholar · View at Scopus
  204. I. C. Schoenhofen, V. V. Lunin, J. P. Julien et al., “Structural and functional characterization of PseC, an aminotransferase involved in the biosynthesis of pseudaminic acid, an essential flagellar modification in Helicobacter pylori,” The Journal of Biological Chemistry, vol. 281, no. 13, pp. 8907–8916, 2006. View at Publisher · View at Google Scholar · View at Scopus
  205. P. Guerry, C. P. Ewing, M. Schirm et al., “Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence,” Molecular Microbiology, vol. 60, no. 2, pp. 299–311, 2006. View at Publisher · View at Google Scholar · View at Scopus
  206. F. Taguchi, S. Shibata, T. Suzuki et al., “Effects of glycosylation on swimming ability and flagellar polymorphic transformation in Pseudomonas syringae pv. tabaci 6605,” Journal of Bacteriology, vol. 190, no. 2, pp. 764–768, 2008. View at Publisher · View at Google Scholar · View at Scopus
  207. I. Gryllos, J. G. Shaw, R. Gavín, S. Merino, and J. M. Tomás, “Role of flm locus in mesophilic Aeromonas species adherence,” Infection and Immunity, vol. 69, no. 1, pp. 65–74, 2001. View at Publisher · View at Google Scholar · View at Scopus
  208. M. Schirm, I. C. Schoenhofen, S. M. Logan, K. C. Waldron, and P. Thibault, “Identification of unusual bacterial glycosylation by tandem mass spectrometry analyses of intact proteins,” Analytical Chemistry, vol. 77, no. 23, pp. 7774–7782, 2005. View at Publisher · View at Google Scholar · View at Scopus
  209. A. A. Rabaan, I. Gryllos, J. M. Tomás, and J. G. Shaw, “Motility and the polar flagellum are required for Aeromonas caviae adherence to HEp-2 cells,” Infection and Immunity, vol. 69, no. 7, pp. 4257–4267, 2001. View at Publisher · View at Google Scholar · View at Scopus
  210. S. M. B. Tabei, P. G. Hitchen, M. J. Day-Williams et al., “An Aeromonas caviae Genomic island ism required for both O-antigen lipopolysaccharide biosynthesis and flagellinlycosylation,” Journal of Bacteriology, vol. 191, no. 8, pp. 2851–2863, 2009. View at Publisher · View at Google Scholar · View at Scopus
  211. R. Canals, S. Vilches, M. Wilhelms, J. G. Shaw, S. Merino, and J. M. Tomaás, “Non-structural flagella genes affecting both polar and lateral flagella-mediated motility in Aeromonas hydrophila,” Microbiology, vol. 153, no. 4, pp. 1165–1175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  212. M. Wilhelms, K. M. Fulton, S. M. Twine, J. M. Toma's, and S. Merino, “Differential glycosylation of polar and lateral flagellins in Aeromonas hydrophila AH-3,” The Journal of Biological Chemistry, vol. 287, no. 33, pp. 27851–27862, 2012. View at Publisher · View at Google Scholar