About this Journal Submit a Manuscript Table of Contents
ISRN Microbiology
Volume 2012 (2012), Article ID 650563, 9 pages
http://dx.doi.org/10.5402/2012/650563
Research Article

Isolation of Cellulolytic Bacillus subtilis Strains from Agricultural Environments

1Division of Sustainable Agriculture Research, Jeju Agricultural Research and Extension Services, Jeju-do 697-828, Republic of Korea
2Research Division, Bio-Agr Co. Ltd., Jeju-shi, Jeju-do 690-022, Republic of Korea
3Department of Food Bioengineering, Jeju National University, Jeju-do 690-756, Republic of Korea

Received 4 October 2011; Accepted 20 November 2011

Academic Editors: M. Feiss and M. T. Rowe

Copyright © 2012 Yu-Kyoung Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. M. Wood and V. Garcia-Campayo, “Enzymology of cellulose degradation,” Biodegradation, vol. 1, no. 2, pp. 147–161, 1990. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Li, H. Yang, B. Roy et al., “The most stirring technology in future: cellulase enzyme and biomass utilization,” African Journal of Biotechnology, vol. 8, no. 11, pp. 2418–2422, 2009. View at Scopus
  3. M. K. Bhat and S. Bhat, “Cellulose degrading enzymes and their potential industrial applications,” Biotechnology Advances, vol. 15, no. 3-4, pp. 583–620, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Henrissat, H. Rodriguez, C. Viet,, and M. Schulein, “Synergism of cellulases from Trichoderma reesei in the degradation of cellulose,” Biotechnology, vol. 3, no. 8, pp. 722–726, 1985.
  5. J. Knowles, P. Lehtovaara, and T. Teeri, “Cellulase families and their genes,” Trends in Biotechnology, vol. 5, no. 9, pp. 255–261, 1987. View at Scopus
  6. T. M. Wood and S. I. McCrae, “The cellulase of T. koningii; Purification and properties of some endoglucanase components with special reference to their action on cellulose when acting alone and in synergism with the cellobiohydrolase,” Biochemical Journal, vol. 171, no. 1, pp. 61–72, 1978. View at Scopus
  7. W. Giligan and E. T. Reese, “Evidence for multiple components in microbial cellulases,” Canadian Journal of Microbiology, vol. 1, no. 2, pp. 90–107, 1954.
  8. T. M. Wood, “Properties of cellulolytic enzyme systems,” Biochemical Society Transactions, vol. 13, no. 2, pp. 407–410, 1985. View at Scopus
  9. D. W. Thayer and C. A. David, “Growth of seeded cellulolytic enrichment cultures on mesquite wood,” Applied and Environmental Microbiology, vol. 36, no. 2, pp. 291–296, 1978. View at Scopus
  10. L. M. Robson and G. H. Chambliss, “Characterization of the cellulolytic activity of a Bacillus isolate,” Applied and Environmental Microbiology, vol. 47, no. 5, pp. 1039–1046, 1984. View at Scopus
  11. N. Dhillon, S. Chhibber, and M. Saxena, “A constitutive endoglucanase (CMCase) from Bacillus licheniformis-1,” Biotechnology Letters, vol. 7, no. 9, pp. 695–697, 1985. View at Scopus
  12. K. Ozaki and S. Ito, “Purification and properties of an acid endo-1,4-β-glucanase from Bacillus sp. KSM-330,” Journal of General Microbiology, vol. 137, no. 1, pp. 41–48, 1991. View at Scopus
  13. K. Horikoshi, “Alkaline cellulases from alkaliphilic Bacillus: enzymatic properties, genetics, and application to detergents,” Extremophiles, vol. 1, no. 2, pp. 61–66, 1997. View at Scopus
  14. K. Aa, R. Flengsrud, V. Lindahl, and A. Tronsmo, “Characterization of production and enzyme properties of an endo-β-1,4-glucanase from Bacillus subtilis CK-2 isolated from compost soil,” Antonie van Leeuwenhoek, vol. 66, no. 4, pp. 319–326, 1994. View at Publisher · View at Google Scholar · View at Scopus
  15. C.-H. Kim, “Characterization and substrate specificity of an endo-β-1,4-D-glucanase I (Avicelase I) from an extracellular multienzyme complex of Bacillus circulans,” Applied and Environmental Microbiology, vol. 61, no. 3, pp. 959–965, 1995. View at Scopus
  16. R. Berlemont, M. Delsaute, D. Pipers et al., “Insights into bacterial cellulose biosynthesis by functional metagenomics on Antarctic soil samples,” The ISME Journal, vol. 3, no. 9, pp. 1070–1081, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. T. Gibson and R. E. Gordon, “Endosporeforming rods and cocci,” in Bergey's Manual of Determinative Bacteriology, R. E. Buchanan and N. E. Gibbons, Eds., pp. 529–574, Williams & Wilkins, Baltimore, Md, USA, 8th edition, 1974.
  18. F. M. Ausubel, R. Brent, R. E. Kingston, et al., Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley-Interscience, New York, NY, USA, 1993.
  19. F. Sanger, S. Nicklen, and A. R. Coulson, “DNA sequencing with chain-terminating inhibitors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 12, pp. 5463–5467, 1977. View at Scopus
  20. G. L. Miller, “Use of dinitrosalicylic acid reagent for determination of reducing sugar,” Analytical Chemistry, vol. 31, no. 3, pp. 426–428, 1959. View at Scopus
  21. T. K. Ghose, “Measurement of cellulase activities,” Pure and Applied Chemistry, vol. 59, no. 2, pp. 257–268, 1987.
  22. M. J. Bailey, P. Biely, and K. Poutanen, “Interlaboratory testing of methods for assay of xylanase activity,” Journal of Biotechnology, vol. 23, no. 3, pp. 257–270, 1992. View at Publisher · View at Google Scholar · View at Scopus
  23. S. H. Park and M. Y. Pack, “Cloning and expression of a Bacillus cellulase gene in Escherichia coli,” Enzyme and Microbial Technology, vol. 8, no. 12, pp. 725–728, 1986. View at Scopus
  24. F. Fukumori, T. Kudo, and K. Horikoshi, “Purification and properties of a cellulase from alkalophilic Bacillus sp. no. 1139,” Journal of General Microbiology, vol. 131, no. 12, pp. 3339–3345, 1985. View at Scopus
  25. T. Hamamoto, F. Foong, O. Shoseyov, and R. H. Doi, “Analysis of functional domains of endoglucanases from Clostridium cellulovorans by gene cloning, nucleotide sequencing and chimeric protein construction,” Molecular and General Genetics, vol. 231, no. 3, pp. 472–479, 1992. View at Scopus
  26. N. Ait, N. Creuzet, and P. Forget, “Partial purification of cellulase from Clostridium thermocellum,” Journal of General Microbiology, vol. 113, no. 2, pp. 399–402, 1979. View at Scopus
  27. Y. W. Han and V. R. Srinivasan, “Purification and characterization of β-glucosidase of Alcaligenes faecalis,” Journal of Bacteriology, vol. 100, no. 3, pp. 1355–1363, 1969. View at Scopus
  28. T. Bartley, C. Waldron, and D. Eveleigh, “A cellobiohydrolase from a thermophilic actinomycete, Microbispora bispora,” Applied Biochemistry and Biotechnology, vol. 9, no. 4, pp. 337–338, 1984. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Pajni, N. Dhillon, D. V. Vadehra, and P. Sharma, “Carboxymethyl cellulase, β-glucosidase and xylanase production by Bacillus isolates from soil,” International Biodeterioration, vol. 25, no. 1–3, pp. 1–5, 1989. View at Scopus
  30. J. X. Heck, P. F. Hertz, and A. Z. Ayub, “Cellulase and xylanase production by isolated amazon Bacillus strains using soybean industrial residue based solid-state cultivation,” Brazilian Journal of Microbiology, vol. 33, no. 3, pp. 213–218, 2002. View at Scopus