About this Journal Submit a Manuscript Table of Contents
ISRN Molecular Biology
Volume 2012 (2012), Article ID 596289, 14 pages
http://dx.doi.org/10.5402/2012/596289
Review Article

Models, Regulations, and Functions of Microtubule Severing by Katanin

Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia 741252, India

Received 1 August 2012; Accepted 20 August 2012

Academic Editors: H. Hashimoto, A. J. Molenaar, and A. Montecucco

Copyright © 2012 Debasish Kumar Ghosh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Frickey and A. N. Lupas, “Phylogenetic analysis of AAA proteins,” Journal of Structural Biology, vol. 146, no. 1-2, pp. 2–10, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. F. J. McNally and R. D. Vale, “Identification of katanin, an ATPase that severs and disassembles stable microtubules,” Cell, vol. 75, no. 3, pp. 419–429, 1993. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Iwaya, Y. Kuwahara, Y. Fujiwara et al., “A common substrate recognition mode conserved between katanin p60 and VPS4 governs microtubule severing and membrane skeleton reorganization,” Journal of Biological Chemistry, vol. 285, no. 22, pp. 16822–16829, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. J. Hartman and R. D. Vale, “Microtubule disassembly by ATP-dependent oligomerization of the AAA enzyme katanin,” Science, vol. 286, no. 5440, pp. 782–785, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Iwaya, K. Akiyama, N. Goda et al., “Effect of Ca2+ on the microtubule-severing enzyme p60-katanin. Insight into the substrate-dependent activation mechanism,” FEBS Journal, vol. 279, no. 7, pp. 1339–1352, 2012. View at Publisher · View at Google Scholar
  6. K. P. McNally, O. A. Bazirgan, and F. J. McNally, “Two domains of p80 katanin regulate microtubule severing and spindle pole targeting by p60 katanin,” Journal of Cell Science, vol. 113, no. 9, pp. 1623–1633, 2000. View at Scopus
  7. J. J. Hartman, J. Mahr, K. McNally et al., “Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit,” Cell, vol. 93, no. 2, pp. 277–287, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Mohrbach and I. M. Kulić, “Motor driven microtubule shape fluctuations: force from within the lattice,” Physical Review Letters, vol. 99, no. 21, Article ID 218102, 4 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Srayko, E. T. O'Toole, A. A. Hyman, and T. Müller-Reichert, “Katanin disrupts the microtubule lattice and increases polymer number in C. elegans meiosis,” Current Biology, vol. 16, no. 19, pp. 1944–1949, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. L. J. Davis, D. J. Odde, S. M. Block, and S. P. Gross, “The importance of lattice defects in katanin-mediated microtubule severing in vitro,” Biophysical Journal, vol. 82, no. 6, pp. 2916–2927, 2002. View at Scopus
  11. J. F. Allard, G. O. Wasteneys, and E. N. Cytrynbaum, “Mechanisms of self-organization of cortical microtubules in plants revealed by computational simulations,” Molecular Biology of the Cell, vol. 21, no. 2, pp. 278–286, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. P. W. Baas, A. Karabay, and L. Qiang, “Microtubules cut and run,” Trends in Cell Biology, vol. 15, no. 10, pp. 518–524, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. J. D. Díaz-Valencia, M. M. Morelli, M. Bailey, D. Zhang, D. J. Sharp, and J. L. Ross, “Drosophila katanin-60 depolymerizes and severs at microtubule defects,” Biophysical Journal, vol. 100, no. 10, pp. 2440–2449, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. E. M. Gusnowski and M. Srayko, “Visualization of dynein-dependent microtubule gliding at the cell cortex: implications for spindle positioning,” Journal of Cell Biology, vol. 194, no. 3, pp. 377–386, 2011. View at Publisher · View at Google Scholar
  15. C. Lu, M. Srayko, and P. E. Mains, “The Caenorhabditis elegans microtubule-severing complex MEI-1/MEI-2 katanin interacts differently with two superficially redundant β-tubulin isotypes,” Molecular Biology of the Cell, vol. 15, no. 1, pp. 142–150, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Liu, S. Woolner, J. E. Johndrow, D. Metzger, A. Flores, and S. M. Parkhurst, “Sisyphus, the Drosophila myosin XV homolog, traffics within filopodia transporting key sensory and adhesion cargos,” Development, vol. 135, no. 1, pp. 53–63, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Wightman and S. R. Turner, “A novel mechanism important for the alignment of microtubules,” Plant Signaling and Behavior, vol. 3, no. 4, pp. 238–239, 2008. View at Scopus
  18. K. Ikegami and M. Setou, “Unique post-translational modifications in specialized microtubule architecture,” Cell Structure and Function, vol. 35, no. 1, pp. 15–22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Sharma, J. Bryant, D. Wloga et al., “Katanin regulates dynamics of microtubules and biogenesis of motile cilia,” Journal of Cell Biology, vol. 178, no. 6, pp. 1065–1079, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Sudo and P. W. Baas, “Strategies for diminishing katanin-based loss of microtubules in tauopathic neurodegenerative diseases,” Human Molecular Genetics, vol. 20, no. 4, Article ID ddq521, pp. 763–778, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Sudo and P. W. Baas, “Acetylation of microtubules influences their sensitivity to severing by katanin in neurons and fibroblasts,” Journal of Neuroscience, vol. 30, no. 21, pp. 7215–7226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. H. Tindemans and B. M. Mulder, “Microtubule length distributions in the presence of protein-induced severing,” Physical Review E, vol. 81, no. 3, Article ID 031910, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. D. J. Odde, L. Ma, A. H. Briggs, A. DeMarco, and M. W. Kirschner, “Microtubule bending and breaking in living fibroblast cells,” Journal of Cell Science, vol. 112, no. 19, pp. 3283–3288, 1999. View at Scopus
  24. M. Furukawa, Y. J. He, C. Borchers, and Y. Xiong, “Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases,” Nature Cell Biology, vol. 5, no. 11, pp. 1001–1007, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Pintard, J. H. Willis, A. Willems et al., “The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase,” Nature, vol. 425, no. 6955, pp. 311–316, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. J. L. F. A. Johnson, C. Lu, E. Raharjo, K. McNally, F. J. McNally, and P. E. Mains, “Levels of the ubiquitin ligase substrate adaptor MEL-26 are inversely correlated with MEI-1/katanin microtubule-severing activity during both meiosis and mitosis,” Developmental Biology, vol. 330, no. 2, pp. 349–357, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. K. J. Wilson, H. Qadota, P. E. Mains, and G. M. Benian, “UNC-89 (obscurin) binds to MEL-26, a BTB-domain protein, and affects the function of MEI-1 (katanin) in striated muscle of Caenorhabditis elegans,” Molecular Biology of the Cell, vol. 23, no. 14, pp. 2623–2634, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. C. M. Cummings, C. A. Bentley, S. A. Perdue, P. W. Baas, and J. D. Singer, “The Cul3/Klhdc5 E3 ligase regulates p60/katanin and is required for normal mitosis in mammalian cells,” Journal of Biological Chemistry, vol. 284, no. 17, pp. 11663–11675, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Kurz, L. Pintard, J. H. Willis et al., “Cytoskeletal regulation by the Nedd8 ubiquitin-like protein modification pathway,” Science, vol. 295, no. 5558, pp. 1294–1298, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Pintard, T. Kurz, S. Glasser, J. H. Willis, M. Peter, and B. Bowerman, “Neddylation and deneddylation of CUL-3 is required to target MEI-1/Katanin for degradation at the meiosis-to-mitosis transition in C. elegans,” Current Biology, vol. 13, no. 11, pp. 911–921, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Maddika and J. Chen, “Protein kinase DYRK2 is a scaffold that facilitates assembly of an E3 ligase,” Nature Cell Biology, vol. 11, no. 4, pp. 409–419, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. L. Stitzel, J. Pellettieri, and G. Seydoux, “The C. elegans DYRK kinase MBK-2 marks oocyte proteins for degradation in response to meiotic maturation,” Current Biology, vol. 16, no. 1, pp. 56–62, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Quintin, P. E. Mains, A. Zinke, and A. A. Hyman, “The mbk-2 kinase is required for inactivation of MEI-1/katanin in the one-cell Caenorhabditis elegans embryo,” EMBO Reports, vol. 4, no. 12, pp. 1175–1181, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Lu and P. E. Mains, “The C. elegans anaphase promoting complex and MBK-2/DYRK kinase act redundantly with CUL-3/MEL-26 ubiquitin ligase to degrade MEI-1 microtubule-severing activity after meiosis,” Developmental Biology, vol. 302, no. 2, pp. 438–447, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Toyo-Oka, S. Sasaki, Y. Yano et al., “Recruitment of katanin p60 by phosphorylated NDEL1, an LIS1 interacting protein, is essential for mitotic cell division and neuronal migration,” Human Molecular Genetics, vol. 14, no. 21, pp. 3113–3128, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Toyo-oka, D. Mori, Y. Yano et al., “Protein phosphatase 4 catalytic subunit regulates Cdk1 activity and microtubule organization via NDEL1 dephosphorylation,” Journal of Cell Biology, vol. 180, no. 6, pp. 1133–1147, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Mori, Y. Yano, K. Toyo-Oka et al., “NDEL1 phosphorylation by Aurora-A kinase is essential for centrosomal maturation, separation, and TACC3 recruitment,” Molecular and Cellular Biology, vol. 27, no. 1, pp. 352–367, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. X. Han, J. E. Gomes, C. L. Birmingham, L. Pintard, A. Sugimoto, and P. E. Mains, “The role of protein phosphatase 4 in regulating microtubule severing in the Caenorhabditis elegans embryo,” Genetics, vol. 181, no. 3, pp. 933–943, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Loughlin, J. D. Wilbur, F. J. McNally, F. J. Nédélec, and R. Heald, “Katanin contributes to interspecies spindle length scaling in Xenopus,” Cell, vol. 147, no. 6, pp. 1397–1407, 2011. View at Publisher · View at Google Scholar
  40. K. P. McNally, D. Buster, and F. J. McNally, “Katanin-mediated microtubule severing can be regulated by multiple mechanisms,” Cell Motility and the Cytoskeleton, vol. 53, no. 4, pp. 337–349, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. W. Li, L. R. DeBella, T. Guven-Ozkan, R. Lin, and L. S. Rose, “An eIF4E-binding protein regulates katanin protein levels in C. elegans embryos,” Journal of Cell Biology, vol. 187, no. 1, pp. 33–42, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. K. McNally, A. Audhya, K. Oegema, and F. J. McNally, “Katanin controls mitotic and meiotic spindle length,” Journal of Cell Biology, vol. 175, no. 6, pp. 881–891, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. F. J. McNally and S. Thomas, “Katanin is responsible for the M-phase microtubulesevering activity in Xenopus eggs,” Molecular Biology of the Cell, vol. 9, no. 7, pp. 1847–1861, 1998. View at Scopus
  44. M. Srayko, D. W. Buster, O. A. Bazirgan, F. J. McNally, and P. E. Mains, “MEI-1/MEI-2 katanin-like microtubule severing activity is required for Caenorhabditis elegans meiosis,” Genes and Development, vol. 14, no. 9, pp. 1072–1084, 2000. View at Scopus
  45. K. P. McNally and F. J. McNally, “The spindle assembly function of Caenorhabditis elegans katanin does not require microtubule-severing activity,” Molecular Biology of the Cell, vol. 22, no. 9, pp. 1550–1560, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Y. Yang, K. McNally, and F. J. McNally, “MEI-1/katanin is required for translocation of the meiosis I spindle to the oocyte cortex in C. elegans,” Developmental Biology, vol. 260, no. 1, pp. 245–259, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Zhang, G. C. Rogers, D. W. Buster, and D. J. Sharp, “Three microtubule severing enzymes contribute to the "Pacman- flux" machinery that moves chromosomes,” Journal of Cell Biology, vol. 177, no. 2, pp. 231–242, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Buster, K. McNally, and F. J. McNally, “Katanin inhibition prevents the redistribution of γ-tubulin at mitosis,” Journal of Cell Science, vol. 115, no. 5, pp. 1083–1092, 2002. View at Scopus
  49. M. Nakamura, D. W. Ehrhardt, and T. Hashimoto, “Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array,” Nature Cell Biology, vol. 12, no. 11, pp. 1064–1070, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. T. M. Sonbuchner, U. Rath, and D. J. Sharp, “KL1 is a novel microtubule severing enzyme that regulates mitotic spindle architecture,” Cell Cycle, vol. 9, no. 12, pp. 2403–2411, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. L. O'Donnell, D. Rhodes, S. J. Smith et al., “An essential role for katanin p80 and microtubule severing in male gamete production,” PLoS Genetics,, vol. 8, no. 5, Article ID e1002698, 2012. View at Publisher · View at Google Scholar
  52. L. B. Smith, L. Milne, N. Nelson et al., “KATNAL1 regulation of sertoli cell microtubule dynamics is essential for spermiogenesis and male fertility,” PLoS Genetics, vol. 8, no. 5, Article ID Article numbere1002697, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Karabay, W. Yu, J. M. Solowska, D. H. Baird, and P. W. Baas, “Axonal growth is sensitive to the levels of katanin, a protein that severs microtubules,” Journal of Neuroscience, vol. 24, no. 25, pp. 5778–5788, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. F. J. Ahmad, W. Yu, F. J. McNally, and P. W. Baas, “An essential role for katanin in severing microtubules in the neuron,” Journal of Cell Biology, vol. 145, no. 2, pp. 305–315, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Butler, J. D. Wood, J. A. Landers, and V. T. Cunliffe, “Genetic and chemical modulation of spastin-dependent axon outgrowth in zebrafish embryos indicates a role for impaired microtubule dynamics in hereditary spastic paraplegia,” Disease Models and Mechanisms, vol. 3, no. 11-12, pp. 743–751, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Koshimizu and M. Ohtomi, “Regulation of katanin-P60 levels by LECT2 adjusts microtubular morphology,” NeuroReport, vol. 21, no. 9, pp. 646–650, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. L. Qiang, W. Yu, M. Liu, J. M. Solowska, and P. W. Baas, “Basic fibroblast growth factor elicits formation of interstitial axonal branches via enhanced severing of microtubules,” Molecular Biology of the Cell, vol. 21, no. 2, pp. 334–344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Qiang, W. Yu, A. Andreadis, M. Luo, and P. W. Baas, “Tau protects microtubules in the axon from severing by Katanin,” Journal of Neuroscience, vol. 26, no. 12, pp. 3120–3129, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. W. Yu, L. Qiang, J. M. Solowska, A. Karabay, S. Korulu, and P. W. Baas, “The microtubule-severing proteins spastin and katanin participate differently in the formation of axonal branches,” Molecular Biology of the Cell, vol. 19, no. 4, pp. 1485–1498, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Korulu and A. Karabay, “IGF-1 participates differently in regulation of severing activity of katanin and spastin,” Cellular and Molecular Neurobiology, vol. 31, no. 4, pp. 497–501, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. W. Yu, J. M. Solowska, L. Qiang, A. Karabay, D. Baird, and P. W. Baas, “Regulation of microtubule severing by katanin subunits during neuronal development,” Journal of Neuroscience, vol. 25, no. 23, pp. 5573–5583, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. H. H. Lee, L. Y. Jan, and Y. N. Jan, “Drosophila IKK-related kinase Ik2 and Katanin p60-like 1 regulate dendrite pruning of sensory neuron during metamorphosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 15, pp. 6363–6368, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Stewart, A. Tsubouchi, M. M. Rolls, W. Daniel Tracey, and N. Tang Sherwood, “Katanin p60-like1 promotes microtubule growth and terminal dendrite stability in the larval class IV sensory neurons of Drosophila,” Journal of Neuroscience, vol. 32, no. 34, pp. 11631–11642, 2012. View at Publisher · View at Google Scholar · View at Scopus
  64. X. Ye, Y. C. Lee, M. Choueiri et al., “Aberrant expression of katanin p60 in prostate cancer bone metastasis,” Prostate, vol. 72, no. 3, pp. 291–300, 2012. View at Publisher · View at Google Scholar · View at Scopus
  65. X. N. Li, Y. L. Li, G. B. Liu, and Y. Q. Ding, “Selection of choriocarcinoma-associated genes using bioinformatics,” Di Yi Jun Yi Da Xue Xue Bao, vol. 25, no. 1, pp. 1–6, 2005. View at Scopus
  66. D. Zhang, K. D. Grode, S. F. Stewman et al., “Drosophila katanin is a microtubule depolymerase that regulates cortical-microtubule plus-end interactions and cell migration,” Nature Cell Biology, vol. 13, no. 4, pp. 361–372, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Sudo and Y. Maru, “LAPSER1 is a putative cytokinetic tumor suppressor that shows the same centrosome and midbody subcellular localization pattern as p80 katanin,” FASEB Journal, vol. 21, no. 9, pp. 2086–2100, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. H. Sudo and Y. Maru, “LAPSER1/LZTS2: a pluripotent tumor suppressor linked to the inhibition of katanin-mediated microtubule severing,” Human Molecular Genetics, vol. 17, no. 16, pp. 2524–2540, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. I. Gozes, “NAP (davunetide) provides functional and structural neuroprotection,” Current Pharmaceutical Design, vol. 17, no. 10, pp. 1040–1044, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. J. M. Solowska, G. Morfini, A. Falnikar et al., “Quantitative and functional analyses of spastin in the nervous system: implications for hereditary spastic paraplegia,” Journal of Neuroscience, vol. 28, no. 9, pp. 2147–2157, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. R. D. Emes and C. P. Ponting, “A new sequence motif linking lissencephaly, Treacher Collins and oral-facial-digital type 1 syndromes, microtubule dynamics and cell migration,” Human Molecular Genetics, vol. 10, no. 24, pp. 2813–2820, 2001. View at Scopus
  72. E. Panteris, I. D. S. Adamakis, G. Voulgari, and G. Papadopoulou, “A role for katanin in plant cell division: microtubule organization in dividing root cells of fra2 and lue1Arabidopsis thaliana mutants,” Cytoskeleton, vol. 68, no. 7, pp. 401–413, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Soga, A. Yamaguchi, T. Kotake, K. Wakabayashi, and T. Hoson, “1-Aminocyclopropane-1-carboxylic acid (ACC)-induced reorientation of cortical microtubules is accompanied by a transient increase in the transcript levels of γ-tubulin complex and katanin genes in azuki bean epicotyls,” Journal of Plant Physiology, vol. 167, no. 14, pp. 1165–1171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. V. Stoppin-Mellet, J. Gaillard, and M. Vantard, “Katanin's severing activity favors bundling of cortical microtubules in plants,” Plant Journal, vol. 46, no. 6, pp. 1009–1017, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. Q. Meng, J. Du, J. Li et al., “Tobacco microtubule-associated protein, MAP65-1c, bundles and stabilizes microtubules,” Plant Molecular Biology, vol. 74, no. 6, pp. 537–547, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Uyttewaal, A. Burian, K. Alim et al., “Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis,” Cell, vol. 149, no. 2, pp. 439–451, 2012. View at Publisher · View at Google Scholar
  77. O. Keech, E. Pesquet, L. Gutierrez et al., “Leaf senescence is accompanied by an early disruption of the microtubule network in Arabidopsis,” Plant Physiology, vol. 154, no. 4, pp. 1710–1720, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. T. Bouquin, O. Mattsson, H. Næsted, R. Foster, and J. Mundy, “The Arabidopsis lue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth,” Journal of Cell Science, vol. 116, no. 5, pp. 791–801, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. D. H. Burk, B. Liu, R. Zhong, W. H. Morrison, and Z. H. Ye, “A katanin-like protein regulates normal cell wall biosynthesis and cell elongation,” Plant Cell, vol. 13, no. 4, pp. 807–827, 2001. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Komorison, M. Ueguchi-Tanaka, I. Aichi et al., “Analysis of the rice mutant dwarf and gladius leaf 1. Aberrant katanin-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling,” Plant Physiology, vol. 138, no. 4, pp. 1982–1993, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. J. Qu, J. Ye, Y. F. Geng, et al., “Dissecting functions of KTN and WRI1 in cotton fiber development by virus-induced gene silencing,” Plant Physiology. In press. View at Publisher · View at Google Scholar
  82. M. Webb, S. Jouannic, J. Foreman, P. Linstead, and L. Dolan, “Cell specification in the Arabidopsis root epidermis requires the activity of ectopic root hair 3—a katanin-p60 protein,” Development, vol. 129, no. 1, pp. 123–131, 2002. View at Scopus
  83. M. Casanova, L. Crobu, C. Blaineau, N. Bourgeois, P. Bastien, and M. Pagès, “Microtubule-severing proteins are involved in flagellar length control and mitosis in Trypanosomatids,” Molecular Microbiology, vol. 71, no. 6, pp. 1353–1370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Q. Rasi, J. D. K. Parker, J. L. Feldman, W. F. Marshall, and L. M. Quarmby, “Katanin knockdown supports a role for microtubule severing in release of basal bodies before mitosis in Chlamydomonas,” Molecular Biology of the Cell, vol. 20, no. 1, pp. 379–388, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. T. A. Lohret, L. Zhao, and L. M. Quarmby, “Cloning of Chlamydomonas p60 katanin and localization to the site of outer doublet severing during deflagellation,” Cell Motility Cytoskeleton, vol. 43, no. 3, pp. 221–231, 1999.
  86. E. E. Dymek, P. A. Lefebvre, and E. F. Smith, “PF15p is the Chlamydomonas homologue of the katanin p80 subunit and is required for assembly of flagellar central microtubules,” Eukaryotic Cell, vol. 3, no. 4, pp. 870–879, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. C. Benz, C. Clucas, J. C. Mottram, and T. C. Hammarton, “Cytokinesis in bloodstream stage Trypanosoma brucei requires a family of katanins and spastin,” PLoS One, vol. 7, no. 1, Article ID e30367, 2012. View at Publisher · View at Google Scholar