About this Journal Submit a Manuscript Table of Contents
ISRN Molecular Biology
Volume 2012 (2012), Article ID 627596, 9 pages
http://dx.doi.org/10.5402/2012/627596
Review Article

The Tousled-Like Kinases as Guardians of Genome Integrity

Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA

Received 10 April 2012; Accepted 2 May 2012

Academic Editors: Y.-K. Jang, Y. B. Lebedev, and A. J. Molenaar

Copyright © 2012 Arrigo De Benedetti. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Roe, C. Rivin, R. Sessions, K. Feldmann, and P. Zambryski, “The tousled gene in A. Thaliana encodes a protein kinase homolog that is required for leaf and flower development,” Cell, vol. 75, no. 5, pp. 939–950, 1993. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Wang, J. Liu, R. Xia et al., “The protein kinase TOUSLED is required for maintenance of transcriptional gene silencing in arabidopsis,” EMBO Reports, vol. 8, no. 1, pp. 77–83, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Sen and A. De Benedetti, “TLK1B promotes repair of UV-damaged DNA through chromatin remodeling by Asf1,” BMC Molecular Biology, vol. 7, article 37, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Sunavala-Dossabhoy, Y. Li, B. Williams, and A. De Benedetti, “A dominant negative mutant of TLK1 causes chromosome missegregation and aneuploidy in normal breast epithelial cells,” BMC Cell Biology, vol. 4, article 16, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Han, G. M. Riefler, J. R. Saam, S. E. Mango, and J. M. Schumacher, “The C. elegans tousled-like kinase contributes to chromosome segregation as a substrate and regulator of the aurora B kinase,” Current Biology, vol. 15, no. 10, pp. 894–904, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Shalom and J. Don, “Tlk, a novel evolutionarily conserved murine serine threonine kinase, encodes multiple testis transcripts,” Molecular Reproduction and Development, vol. 52, no. 4, pp. 392–405, 1999.
  7. H. Silljé and E. Nigg, “Identification of human Asf1 chromatin assembly factors as substrates of tousled-like kinases,” Current Biology, vol. 11, no. 13, pp. 1068–1073, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Li, R. DeFatta, C. Anthony, G. Sunavala, and A. De Benedetti, “A translationally regulated tousled kinase phosphorylates histone H3 and confers radioresistance when overexpressed,” Oncogene, vol. 20, no. 6, pp. 726–738, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Sunavala-Dossabhoy and A. De Benedetti, “Tousled homolog, TLK1, binds and phosphorylates Rad9; TLK1 acts as a molecular chaperone in DNA repair,” DNA Repair, vol. 8, no. 1, pp. 87–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Carrera, Y. Moshkin, S. Grönke et al., “Tousled-like kinase functions with the chromatin assembly pathway regulating nuclear divisions,” Genes & Development, vol. 17, no. 20, pp. 2578–2590, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Han, J. Saam, H. Adams, S. Mango, and J. Schumacher, “The C. elegans tousled-like kinase (TLK-1) has an essential role in transcription,” Current Biology, vol. 13, no. 22, pp. 1921–1929, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Sunavala-Dossabhoy, S. Balakrishnan, S. Sen, S. Nuthalapaty, and A. De Benedetti, “The radioresistance kinase TLK1B protects the cells by promoting repair of double strand breaks,” BMC Molecular Biology, vol. 6, article 19, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Hashimoto, T. Matsui, K. Iwabuchi, and T. Date, “PKU-β/TLK1 regulates myosin II activities, and is required for accurate equaled chromosome segregation,” Mutation Research, vol. 657, no. 1, pp. 63–67, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Li, T. Umeyama, and C. Wang, “The chromosomal passenger complex and a mitotic kinesin interact with the tousled-like kinase in trypanosomes to regulate mitosis and cytokines,” PLoS ONE, vol. 3, no. 11, Article ID e3814, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Li, C. Chiang, H. Huang, and G. Liaw, “Mars and tousled-like kinase act in parallel to ensure chromosome fidelity in drosophila,” Journal of Biomedical Science, vol. 16, no. 1, article 51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Zhang, H. Xing, and A. Muslin, “Nuclear localization of protein kinase U-α is regulated by 14-3-3,” The Journal of Biological Chemistry, vol. 274, no. 35, pp. 24865–24872, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Kodym, C. Henöckl, and C. Fürweger, “Identification of the human DEAD-box protein p68 as a substrate of Tlk1,” Biochemical and Biophysical Research Communications, vol. 333, no. 2, pp. 411–417, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Munakata, N. Adachi, N. Yokoyama, T. Kuzuhara, and M. Horikoshi, “A human homologue of yeast anti-silencing factor has histone chaperone activity,” Genes to Cells, vol. 5, no. 3, pp. 221–233, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Sanematsu, Y. Takami, H. K. Barman et al., “Asf1 is required for viability and chromatin assembly during DNA replication in vertebrate cells,” The Journal of Biological Chemistry, vol. 281, no. 19, pp. 13817–13827, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. I. F. Grigsby, E. Rutledge, C. A. Morton, and F. P. Finger, “Functional redundancy of two C. elegans homologs of the histone chaperone Asf1 in germline DNA replication,” Developmental Biology, vol. 329, no. 1, pp. 64–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Umehara, T. Chimura, N. Ichikawa, and M. Horikoshi, “Polyanionic stretch-deleted histone chaperone cia1/Asf1p is functional both in vivo and in vitro,” Genes to Cells, vol. 7, no. 1, pp. 59–73, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. J. G. Linger and J. K. Tyler, “Chromatin disassembly and reassembly during DNA repair,” Mutation Research, vol. 618, no. 1-2, pp. 52–64, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Ransom, B. Dennehey, and J. Tyler, “Chaperoning histones during DNA replication and repair,” Cell, vol. 140, no. 2, pp. 183–195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Alabert and A. Groth, “Chromatin replication and epigenome maintenance,” Nature Reviews Molecular Cell Biology, vol. 13, no. 3, pp. 153–167, 2012.
  25. M. W. Adkins and J. K. Tyler, “The histone chaperone Asf1p mediates global chromatin disassembly in vivo,” The Journal of Biological Chemistry, vol. 279, no. 50, pp. 52069–52074, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Korber, S. Barbaric, T. Luckenbach et al., “The histone chaperone Asf1 increases the rate of histone eviction at the yeast PHO5 and PHO8 promoters,” The Journal of Biological Chemistry, vol. 281, no. 9, pp. 5539–5545, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Takahata, Y. Yu, and D. Stillman, “FACT and Asf1 regulate nucleosome dynamics and coactivator binding at the HO promoter,” Molecular Cell, vol. 34, no. 4, pp. 405–415, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Chen, J. Carson, J. Feser et al., “Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair,” Cell, vol. 134, no. 2, pp. 231–243, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. C. English, M. Adkins, J. Carson, M. E. A. Churchill, and J. Tyler, “Structural basis for the histone chaperone activity of Asf1,” Cell, vol. 127, no. 3, pp. 495–508, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Adkins, S. Howar, and J. Tyler, “Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes,” Molecular Cell, vol. 14, no. 5, pp. 657–666, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. A. De Benedetti, “Tousled kinase TLK1B mediates chromatin assembly in conjunction with Asf1 regardless of its kinase activity,” BMC Research Notes, vol. 3, article 68, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Sohn and Y. Cho, “Crystal structure of the human Rad9-Hus1-Rad1 clamp,” Journal of Molecular Biology, vol. 390, no. 3, pp. 490–502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Delacroix, J. M. Wagner, M. Kobayashi, K.-I. Yamamoto, and L. M. Karnitz, “The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1,” Genes & Development, vol. 21, no. 12, pp. 1472–1477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Thelen, C. Venclovas, and K. Fidelis, “A sliding clamp model for the Rad1 family of cell cycle checkpoint proteins,” Cell, vol. 96, no. 6, pp. 769–770, 1999. View at Scopus
  35. M. Burtelow, P. Roos-Mattjus, M. Rauen, J. Babendure, and L. Karnitz, “Reconstitution and molecular analysis of the hRad9-hHus1-hRad1 (9-1-1) DNA damage responsive checkpoint complex,” The Journal of Biological Chemistry, vol. 276, no. 28, pp. 25903–25909, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Griffith, L. Lindsey-Boltz, and A. Sancar, “Structures of the human Rad17-replication factor C and checkpoint Rad 9-1-1 complexes visualized by glycerol spray/low voltage microscopy,” The Journal of Biological Chemistry, vol. 277, no. 18, pp. 15233–15236, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Lindsey-Boltz, V. Bermudez, J. Hurwitz, and A. Sancar, “Purification and characterization of human DNA damage checkpoint rad complexes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 20, pp. 11236–11241, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. W. Wang, P. Brandt, M. Rossi et al., “The human Rad9-Rad1-Hus1 checkpoint complex stimulates flap endonuclease 1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 48, pp. 16762–16767, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Friedrich-Heineken, M. Toueille, B. Tännler et al., “The two DNA clamps Rad9/Rad1/Hus1 complex and proliferating cell nuclear antigen differentially regulate flap endonuclease 1 activity,” Journal of Molecular Biology, vol. 353, no. 5, pp. 980–989, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Toueille, N. El-Andaloussi, I. Fouin et al., “The human Rad9/Rad1/Hus1 damage sensor clamp interacts with DNA polymerase β and increases its DNA substrate utilisation efficiency: implications for DNA repair,” Nucleic Acids Research, vol. 32, no. 11, pp. 3316–3324, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. E. Smirnova, M. Toueille, E. Markkanen, and U. Hübscher, “The human checkpoint sensor and alternative DNA clamp Rad9-Rad1-Hus1 modulates the activity of DNA ligase I, a component of the long-patch base excision repair machinery,” Biochemical Journal, vol. 389, no. 1, pp. 13–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Chang and A. Lu, “Interaction of checkpoint proteins Hus1/Rad1/Rad9 with DNA base excision repair enzyme MutY homolog in fission yeast, Schizosaccharomyces pombe,” The Journal of Biological Chemistry, vol. 280, no. 1, pp. 408–417, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Lydall and T. Weinert, “Yeast checkpoint genes in DNA damage processing: implications for repair and arrest,” Science, vol. 270, no. 5241, pp. 1488–1491, 1995. View at Scopus
  44. A. Parker, I. Van de Weyer, M. Laus et al., “A human homologue of the schizosaccharomyces pombe rad1 + checkpoint gene encodes an exonuclease,” The Journal of Biological Chemistry, vol. 273, no. 29, pp. 18332–18339, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Bessho and A. Sancar, “Human DNA damage checkpoint protein hRAD9 is a 3 to 5 exonuclease,” The Journal of Biological Chemistry, vol. 275, no. 11, pp. 7451–7454, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Canfield, J. Rains, and A. De Benedetti, “TLK1B promotes repair of DSBs via its interaction with Rad9 and Asf1,” BMC Molecular Biology, vol. 10, article 110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Cotta-Ramusino, E. McDonald, K. Hurov, M. Sowa, J. Harper, and S. Elledge, “A DNA damage response screen identifies RHINO, a 9-1-1 and topBP1 interacting protein required for ATR signaling,” Science, vol. 332, no. 6035, pp. 1313–1317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Pichierri, S. Nicolai, L. Cignolo, M. Bignami, and A. Franchitto, “The RAD9-RAD1-HUS1 (9.1.1) complex interacts with WRN and is crucial to regulate its response to replication fork stalling,” Oncogene. In press. View at Publisher · View at Google Scholar
  49. R. St. Onge, B. Besley, J. Pelley, and S. Davey, “A role for the phosphorylation of hRad9 in checkpoint signaling,” The Journal of Biological Chemistry, vol. 278, no. 29, pp. 26620–26628, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Roos-Mattjus, K. Hopkins, A. Oestreich et al., “Phosphorylation of human Rad9 is required for genotoxin-activated checkpoint signaling,” The Journal of Biological Chemistry, vol. 278, no. 27, pp. 24428–24437, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Yoshida, H.-G. Wang, Y. Miki, and D. Kufe, “Protein kinase Cδ is responsible for constitutive and DNA damage-induced phosphorylation of Rad9,” EMBO Journal, vol. 22, no. 6, pp. 1431–1441, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. R. St. Onge, B. Besley, M. Park, R. Casselman, and S. Davey, “DNA damage-dependent and -independent phosphorylation of the hRad9 checkpoint protein,” The Journal of Biological Chemistry, vol. 276, no. 45, pp. 41898–41905, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Medhurst, D. Warmerdam, I. Akerman et al., “ATR and Rad17 collaborate in modulating Rad9 localisation at sites of DNA damage,” Journal of Cell Science, vol. 121, no. 23, pp. 3933–3940, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Takemoto, A. Murayama, M. Katano et al., “Analysis of the role of aurora B on the chromosomal targeting of condensin I,” Nucleic Acids Research, vol. 35, no. 7, pp. 2403–2412, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. Z. Li, S. Gourguechon, and C. C. Wang, “Tousled-like kinase in a microbial eukaryote regulates spindle assembly and s-phase progression by interacting with Aurora kinase and chromatin assembly factors,” Journal of Cell Science, vol. 120, no. 21, pp. 3883–3894, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. G. Sunavala-Dossabhoy, M. Fowler, and A. De Benedetti, “Translation of the radioresistance kinase TLK1B is induced by γ-irradiation through activation of mTOR and phosphorylation of 4E-BP1,” BMC Molecular Biology, vol. 5, article 1, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Guo, C. Mizzen, Y. Wang, and J. Larner, “Histone H1 and H3 dephosphorylation are differentially regulated by radiation-induced signal transduction pathways,” Cancer Research, vol. 60, no. 20, pp. 5667–5672, 2000. View at Scopus
  58. P. Sassone-Corsi, C. A. Mizzen, P. Cheung et al., “Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3,” Science, vol. 285, no. 5429, pp. 886–891, 1999. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Thomson, A. L. Clayton, C. A. Hazzalin, S. Rose, M. J. Barratt, and L. C. Mahadevan, “The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase,” EMBO Journal, vol. 18, no. 17, pp. 4779–4793, 1999. View at Publisher · View at Google Scholar · View at Scopus
  60. C. De Souza, A. Osmani, L. Wu, J. Spotts, and S. Osmani, “Mitotic histone H3 phosphorylation by the NIMA kinase in aspergillus nidulans,” Cell, vol. 102, no. 3, pp. 293–302, 2000. View at Scopus
  61. J. Hsu, Z. Sun, X. Li et al., “Mitotic phosphorylation of histone H3 is governed by IpI1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes,” Cell, vol. 102, no. 3, pp. 279–291, 2000. View at Scopus
  62. T. Nagase, N. Seki, A. Tanaka, K. Ishikawa, and N. Nomura, “Prediction of the coding sequences of unidentified human genes. IV. The coding sequences of 40 new genes (KIAA0121-KIAA0160) deduced by analysis of cDNA clones from human cell line KG-1,” DNA Research, vol. 2, no. 4, pp. 167–174, 1995. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Silljé, K. Takahashi, K. Tanaka, G. Van Houwe, and E. Nigg, “Mammalian homologues of the plant tousled gene code for cell-cycle-regulated kinases with maximal activities linked to ongoing DNA replication,” EMBO Journal, vol. 18, no. 20, pp. 5691–5702, 1999. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Yamakawa, Y. Kameoka, K. Hashimoto et al., “cDNA cloning and chromosomal mapping of genes encoding novel protein kinases termed PKU-α and PKU-β, which have nuclear localization signal,” Gene, vol. 202, no. 1-2, pp. 193–201, 1997. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Chen, “PARP inhibitors: its role in treatment of cancer,” Chinese Journal of Cancer, vol. 30, no. 7, pp. 463–471, 2011.
  66. A. Groth, J. Lukas, E. Nigg et al., “Human tousled like kinases are targeted by an ATM- and Chk1-dependent DNA damage checkpoint,” EMBO Journal, vol. 22, no. 7, pp. 1676–1687, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Byrnes, A. De Benedetti, N. Holm et al., “Correlation of TLK1B in elevation and recurrence in doxorubicin-treated breast cancer patients with high eIF4E overexpression,” Journal of the American College of Surgeons, vol. 204, no. 5, pp. 925–933, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. R. Wolfort, A. De Benedetti, S. Nuthalapaty, H. Yu, Q. Chu, and B. Li, “Up-regulation of TLK1B by eIF4E overexpression predicts cancer recurrence in irradiated patients with breast cancer,” Surgery, vol. 140, no. 2, pp. 161–169, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. L. E. Kelemen, X. Wang, Z. S. Fredericksen et al., “Genetic variation in the chromosome 17q23 amplicon and breast cancer risk,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 6, pp. 1864–1868, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. K. N. Stevens, X. Wang, Z. Fredericksen et al., “Evaluation of associations between common variation in mitotic regulatory pathways and risk of overall and high grade breast cancer,” Breast Cancer Research and Treatment, vol. 129, no. 2, pp. 617–622, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Ronald, G. Sunavala-Dossabhoy, L. Adams, B. Williams, and A. De Benedetti, “The expression of tousled kinases in CaP cell lines and its relation to radiation response and DSB repair,” Prostate, vol. 71, no. 13, pp. 1367–1373, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Zhu, C. Zhang, and H. Lieberman, “Rad9 has a functional role in human prostate carcinogenesis,” Cancer Research, vol. 68, no. 5, pp. 1267–1274, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. U. Moehren, S. Denayer, M. Podvinec, G. Verrijdt, and F. Claessens, “Identification of androgen-selective androgen-response elements in the human aquaporin-5 and Rad9 genes,” Biochemical Journal, vol. 411, no. 3, pp. 679–686, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. C. Hsu, Y. Chen, H. Ting et al., “Androgen receptor (AR) NH2- and COOH-terminal interactions result in the differential influences on the AR-mediated transactivation and cell growth,” Molecular Endocrinology, vol. 19, no. 2, pp. 350–361, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. C. G. Broustas and H. B. Lieberman, “Contributions of Rad9 to tumorigenesis,” Journal of Cellular Biochemistry, vol. 113, no. 3, pp. 742–751, 2012.
  76. H. B. Lieberman, J. D. Bernstock, C. G. Broustas, K. M. Hopkins, C. Leloup, and A. Zhu, “The role of RAD9 in tumorigenesis,” Journal of Molecular Cell Biology, vol. 3, no. 1, pp. 39–43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Corpet, L. De Koning, J. Toedling et al., “Asf1b, the necessary Asf1 isoform for proliferation, is predictive of outcome in breast cancer,” EMBO Journal, vol. 30, no. 3, pp. 480–493, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. N. Van Roy, J. Vandesompele, G. Berx et al., “Localization of the 17q breakpoint of a constitutional 1;17 translocation in a patient with neuroblastoma within a 25-kb segment located between the ACCN1 and TLK2 genes and near the distal breakpoints of two microdeletions in neurofibromatosis type 1 patients,” Genes Chromosomes and Cancer, vol. 35, no. 2, pp. 113–120, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. C. H. Lee, B. O. Alpert, P. Sankaranarayanan, and O. Alter, “GSVD comparison of patient-matched normal and tumor aCGH profiles reveals global copy-number alterations predicting glioblastoma multiforme survival,” PLoS ONE, vol. 7, no. 1, Article ID e30098, 2012.
  80. J. Mello, H. Silljé, D. Roche, D. Kirschner, E. Nigg, and G. Almouzni, “Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway,” EMBO Reports, vol. 3, no. 4, pp. 329–334, 2002. View at Publisher · View at Google Scholar · View at Scopus
  81. T. Tsukuda, A. B. Fleming, J. A. Nickoloff, and M. A. Osley, “Chromatin remodelling at a DNA double-strand break site in saccharomyces cerevisiae,” Nature, vol. 438, no. 7066, pp. 379–383, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. A. De Benedetti, “Tousled kinase TLK1B counteracts the effect of Asf1 in inhibition of histone H3-H4 tetramer formation,” BMC Research Notes, vol. 2, article 128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Elledge, “Cell cycle checkpoints: preventing an identity crisis,” Science, vol. 274, no. 5293, pp. 1664–1672, 1996. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Braunstein, M. L. Badura, Q. Xi, S. C. Formenti, and R. J. Schneider, “Regulation of protein synthesis by ionizing radiation,” Molecular and Cellular Biology, vol. 29, no. 21, pp. 5645–5656, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. R. Kodym, T. Mayerhofer, and E. Ortmann, “Purification and identification of a protein kinase activity modulated by ionizing radiation,” Biochemical and Biophysical Research Communications, vol. 313, no. 1, pp. 97–103, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. D. Krause, J. Jonnalagadda, M. Gatei et al., “Suppression of tousled-like kinase activity after DNA damage or replication block requires ATM, NBS1 and Chk1,” Oncogene, vol. 22, no. 38, pp. 5927–5937, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Franco, W. Lam, P. Burgers, and P. Kaufman, “Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C,” Genes & Development, vol. 19, no. 11, pp. 1365–1375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. P. Pichierri, F. Ammazzalorso, M. Bignami, and A. Franchitto, “The Werner syndrome protein: linking the replication checkpoint response to genome stability,” Aging, vol. 3, no. 3, pp. 311–318, 2011.
  89. Y. Takayama, T. Kokuryo, Y. Yokoyama et al., “Silencing of tousled-like kinase 1 sensitizes cholangiocarcinoma cells to cisplatin-induced apoptosis,” Cancer Letters, vol. 296, no. 1, pp. 27–34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Palaniyandi, Y. Odaka, W. Green et al., “Adenoviral delivery of tousled kinase for the protection of salivary glands against ionizing radiation damage,” Gene Therapy, vol. 18, no. 3, pp. 275–282, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. G. Sunavala-Dossabhoy, S. Palaniyandi, C. Richardson, A. De Benedetti, L. Schrott, and G. Caldito, “TAT-mediated delivery of tousled protein to salivary glands protects against radiation-induced hypofunction,” International Journal of Radiation Oncology, Biology, Physics. In press.