About this Journal Submit a Manuscript Table of Contents
ISRN Nanomaterials
Volume 2012 (2012), Article ID 151748, 8 pages
http://dx.doi.org/10.5402/2012/151748
Research Article

Development of Lead-Free Nanowire Composites for Energy Storage Applications

Department of Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA

Received 31 August 2012; Accepted 25 September 2012

Academic Editors: J. Blázquez and A. A. Ismail

Copyright © 2012 Miguel Mendoza et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Barber, S. Balasubramanian, Y. Anguchamy et al., “Polymer composite and nanocomposite dielectric materials for pulse power energy storage,” Materials, vol. 2, pp. 1697–1733, 2009.
  2. P. J. Grbović, P. Delarue, P. Le Moigne, and P. Bartholomeus, “The ultracapacitor-based controlled electric drives with braking and ride-through capability: overview and analysis,” IEEE Transactions on Industrial Electronics, vol. 58, no. 3, pp. 925–936, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Zhang, H. Feng, X. Wu et al., “Progress of electrochemical capacitor electrode materials: a review,” International Journal of Hydrogen Energy, vol. 34, no. 11, pp. 4889–4899, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Rao, S. Ogitani, P. Kohl, and C. P. Wong, “Novel polymer-ceramic nanocomposite based on high dielectric constant epoxy formula for embedded capacitor application,” Journal of Applied Polymer Science, vol. 83, no. 5, pp. 1084–1090, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Lehmann, “Overview of the electric launch activities at the French-German research Institute of Saint-Louis (ISL),” IEEE Transactions on Magnetics, vol. 39, no. 1, pp. 24–28, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Tanaka, G. C. Montanari, and R. Mülhaupt, “Polymer nanocomposites as dielectrics and electrical insulation—perspectives for processing technologies, material characterization and future applications,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 11, no. 5, pp. 763–784, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Tian, X. Wang, L. Shu et al., “Preparation of nano BaTiO3-based ceramics for multilayer ceramic capacitor application by chemical coating method,” Journal of the American Ceramic Society, vol. 92, no. 4, pp. 830–833, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Unruan, T. Sareein, J. Tangsritrakul et al., “Changes in dielectric and ferroelectric properties of Fe3+/Nb5+ hybrid-doped barium titanate ceramics under compressive stress,” Journal of Applied Physics, vol. 104, no. 12, Article ID 124102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. O. Guillon, J. Chang, S. Schaab, and S.-J. L. Kang, “Capacitance enhancement of doped barium titanate dielectrics and multilayer ceramic capacitors by a post-sintering thermo-mechanical treatment,” Journal of the American Ceramic Society, vol. 95, no. 7, pp. 2277–2281, 2012. View at Publisher · View at Google Scholar
  10. S. S. Ibrahim, A. A. Al Jaafari, and A. S. Ayesh, “Physical characterizations of three phase polycarbonate nanocomposites,” Journal of Plastic Film and Sheeting, vol. 27, no. 4, pp. 275–291, 2011. View at Publisher · View at Google Scholar
  11. L. Xie, X. Huang, C. Wu, and P. Jiang, “Core-shell structured poly(methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: a route to high dielectric constant materials with the inherent low loss of the base polymer,” Journal of Materials Chemistry, vol. 21, no. 16, pp. 5897–5906, 2011. View at Publisher · View at Google Scholar
  12. P. Kim, N. M. Doss, J. P. Tillotson et al., “High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer,” ACS Nano, vol. 3, no. 9, pp. 2581–2592, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. P. Mao, S. Y. Mao, Z.-G. Ye, Z. X. Xie, and L. S. Zheng, “Size-dependences of the dielectric and ferroelectric properties of BaTiO3/polyvinylidene fluoride nanocomposites,” Journal of Applied Physics, vol. 108, no. 1, Article ID 014102, 2010. View at Publisher · View at Google Scholar
  14. Z.-M. Dang, J.-K. Yuan, J.-W. Zha, T. Zhou, S.-T. Li, and G.-H. Hu, “Fundamentals, processes and applications of high-permittivity polymer-matrix composites,” Progress in Materials Science, vol. 57, no. 4, pp. 660–723, 2012. View at Publisher · View at Google Scholar
  15. L. Ni and X. M. Chen, “Dielectric relaxations and formation mechanism of giant dielectric constant step in CaCu3Ti4O12 ceramics,” Applied Physics Letters, vol. 91, no. 12, Article ID 122905, 2007. View at Publisher · View at Google Scholar
  16. A. Chen, K. Kamata, M. Nakagawa, T. Iyoda, H. Wang, and X. Li, “Formation process of silver-polypyrrole coaxial nanocables synthesized by redox reaction between AgNO3 and pyrrole in the presence of poly(vinylpyrrolidone),” Journal of Physical Chemistry B, vol. 109, no. 39, pp. 18283–18288, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. D. K. Das-Gupta and K. Doughty, “Polymer-ceramic composite materials with high dielectric constants,” Thin Solid Films, vol. 158, no. 1, pp. 93–105, 1988. View at Scopus
  18. C. Andrews, Y. Lin, and H. A. Sodano, “The effect of particle aspect ratio on the electroelastic properties of piezoelectric nanocomposites,” Smart Materials and Structures, vol. 19, no. 2, Article ID 025018, 2010. View at Publisher · View at Google Scholar
  19. H. Tang, Y. Lin, C. Andrews, and H. A. Sodano, “Nanocomposites with increased energy density through high aspect ratio PZT nanowires,” Nanotechnology, vol. 22, no. 1, Article ID 015702, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. H. Jung, M. Lee, J. I. Hong et al., “Lead-free NaNbO3 nanowires for high output piezoelectric nanogenerator,” ACS Nano, vol. 5, Article ID 10041, 2011.
  21. J. Wang, C. S. Sandu, and N. Setter, “Large-scale fabrication of titanium-rich perovskite PZT submicro/nano wires and their electromechanical properties,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 9, pp. 1813–1819, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. ASTM Standard D149-09, “Standard test method for dielectric breakdown voltage and dielectric strength of solid electrical insulating materials at commercial power frequencies,” Research Report, ASTM International, West Conshohocken, Pa, USA, 2009.
  23. H. Shi, X. Li, D. Wang, Y. Yuan, Z. Zou, and J. Ye, “NaNbO3 nanostructures: facile synthesis, characterization, and their photocatalytic properties,” Catalysis Letters, vol. 132, no. 1-2, pp. 205–212, 2009. View at Publisher · View at Google Scholar
  24. T. Y. Ke, H. A. Chen, H. S. Sheu et al., “Sodium niobate nanowire and its piezoelectricity,” Journal of Physical Chemistry C, vol. 112, no. 24, pp. 8827–8831, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Lu, D. Zhang, Q. Zhao, C. Wang, W. Zhang, and Y. Wei, “Large-scale synthesis of necklace-like single-crystalline PbTiO3 nanowires,” Macromolecular Rapid Communications, vol. 27, no. 1, pp. 76–80, 2006. View at Publisher · View at Google Scholar
  26. Z. Cai, X. Xing, R. Yu, X. Sun, and G. Liu, “Morphology-controlled synthesis of lead titanate powders,” Inorganic Chemistry, vol. 46, pp. 7423–7427, 2007.
  27. B. Chu, X. Zhou, K. Ren et al., “A dielectric polymer with high electric energy density and fast discharge speed,” Science, vol. 313, no. 5785, pp. 334–336, 2006. View at Publisher · View at Google Scholar
  28. V. V. Varadan, Y. R. Roh, V. K. Varadan, and R. H. Tancrell, “Measurement of all the elastic and dielectric constants of poled PVDF films,” in Proceedings of the IEEE Ultrasonics Symposium, vol. 2, pp. 727–730, October 1989. View at Scopus
  29. Y. I. Yuzyuk, P. Simon, E. Gagarina et al., “Modulated phases in NaNbO3: Raman scattering, synchrotron x-ray diffraction, and dielectric investigations,” Journal of Physics Condensed Matter, vol. 17, no. 33, pp. 4977–4990, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. V. Shanker, S. L. Samal, G. K. Pradhan, C. Narayana, and A. K. Ganguli, “Nanocrystalline NaNbO3 and NaTaO3: rietveld studies, Raman spectroscopy and dielectric properties,” Solid State Sciences, vol. 11, no. 2, pp. 562–569, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Hu, H. Gu, W. Chen, and Y. Wang, “Preparation of PbTiO3 nanoceramics based on hydrothermal nanopowders and characterization of their electrical properties,” Materials Chemistry and Physics, vol. 121, no. 1-2, pp. 10–13, 2010.
  32. K. M. Slenes, P. Winsor, T. Scholz, and M. Hudis, “Pulse power capability of high energy density capacitors based on a new dielectric material,” IEEE Transactions on Magnetics, vol. 37, no. 1, pp. 324–327, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. Q. Li, T. Zhao, and W. H. Siew, “Definition and digital algorithms of dielectric loss factor for condition monitoring of high-voltage power equipment with harmonics emphasis,” IEE Proceedings Generation, Transmission and Distribution, vol. 152, no. 3, pp. 309–312, 2005. View at Publisher · View at Google Scholar
  34. H. Tang, Y. Lin, and H. A. Sodano, “Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly,” Advanced Energy Materials, vol. 2, no. 4, pp. 469–476, 2012. View at Publisher · View at Google Scholar