About this Journal Submit a Manuscript Table of Contents
ISRN Nanomaterials
Volume 2012 (2012), Article ID 376940, 8 pages
http://dx.doi.org/10.5402/2012/376940
Research Article

Zinc-Salt-Mediated Synthesis, Growth Kinetic, and Shaped Evolution of Silver Nanoparticles

1Department of Chemistry, University of Agriculture, Abeokuta, Nigeria
2Center for Energy Research and Development, Obafemi Awolowo University, Ile-Ife, Nigeria
3Nanosciences Laboratories, Materials Research Department, iThemba LABS, Somerset West 7129, South Africa
4National Agency for Science and Engineering Infrastructure, Idu Industrial Area, Abuja, Nigeria
5Department of Physics, University of Nigeria, Nsukka, Nigeria

Received 12 August 2012; Accepted 12 September 2012

Academic Editors: N. R. Jana and S.-H. Kim

Copyright © 2012 E. O. Dare et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. M. Lieber, “Nanoscale science and technology: building a big future from small things,” MRS Bulletin, vol. 28, no. 7, pp. 486–491, 2003. View at Scopus
  2. M. P. Pileni, “Magnetic fluids: fabrication, magnetic properties, and organization of nanocrystals,” Advanced Functional Materials, vol. 11, no. 5, pp. 323–336, 2001.
  3. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science, vol. 275, no. 5303, pp. 1102–1106, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. P. V. Kamat, “Photophysical, photochemical and photocatalytic aspects of metal nanoparticles,” The Journal of Physical Chemistry B, vol. 106, no. 32, pp. 7729–7744, 2002. View at Publisher · View at Google Scholar
  5. Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, and Y. Xia, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone),” Chemistry of Materials, vol. 14, no. 11, pp. 4736–4745, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Zhang, J. Yang, J. Ma, H. Cheng, and L. Huang, “Wet chemical synthesis of silver nanowire thin films at ambient temperature,” Chemistry of Materials, vol. 16, no. 5, pp. 872–876, 2004. View at Publisher · View at Google Scholar
  7. L. Suber, I. Sondi, E. Matijević, and D. V. Goia, “Preparation and the mechanisms of formation of silver particles of different morphologies in homogeneous solutions,” Journal of Colloid and Interface Science, vol. 288, no. 2, pp. 489–495, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Kim, S. Jeong, and J. Moon, “Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection,” Nanotechnology, vol. 17, no. 16, pp. 4019–4024, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. L. M. Liz-Marzan and A. P. Philipse, “Stable hydrosols of metallic and bimetallic nanoparticles immobilized on imogolite fibers,” The Journal of Physical Chemistry, vol. 99, no. 41, pp. 15120–15128, 1995. View at Publisher · View at Google Scholar
  10. M. Jin, X. Zhang, S. Nishimoto et al., “Large-scale fabrication of Ag nanoparticles in PVP nanofibres and net-like silver nanofibre films by electrospinning,” Nanotechnology, vol. 18, no. 7, Article ID 075605, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. A. R. Siekkinen, J. M. McLellan, J. Chen, and Y. Xia, “Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide,” Chemical Physics Letters, vol. 432, no. 4–6, pp. 491–496, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Zhu, C. Kan, X. Zhu et al., “Synthesis of perfect silver nanocubes by a simple polyol process,” Journal of Materials Research, vol. 22, no. 6, pp. 1479–1485, 2007. View at Publisher · View at Google Scholar
  13. S. Chen and D. L. Carroll, “Synthesis and characterization of truncated triangular silver nanoplates,” Nano Letters, vol. 2, no. 9, pp. 1003–1007, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Callegari, D. Tonti, and M. Chergui, “Photochemically grown silver nanoparticles with wavelength-controlled size and shape,” Nano Letters, vol. 3, no. 11, pp. 1565–1568, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. S. H. Liou, S. Huang, E. Klimek, R. D. Kirby, and Y. D. Yao, “Enhancement of coercivity in nanometer-size CoPt crystallites,” Journal of Applied Physics, vol. 85, no. 8, pp. 4334–4336, 1999. View at Scopus
  16. I. Srnova-Sloufova, F. Lednicky, A. Gemperle, and J. Gemperlova, “Core-shell (Ag)Au bimetallic nanoparticles: analysis of transmission electron microscopy images,” Langmuir, vol. 16, no. 25, pp. 9928–9935, 2000.
  17. M. P. Mallin and C. J. Murphy, “Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles,” Nano Letters, vol. 2, no. 11, pp. 1235–1237, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Sandhyarani and T. Pradeep, “Crystalline solids of alloy clusters,” Chemistry of Materials, vol. 12, no. 6, pp. 1755–1761, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. D.-H. Chen and C.-J. Chen, “Formation and characterization of Au-Ag bimetallic nanoparticles in water-in-oil microemulsions,” Journal of Materials Chemistry, vol. 12, pp. 1557–1562, 2002.
  20. P. B. Joshi, V. J. Rao, B. R. Rehani, and A. Pratap, “Silver-zinc oxide electrical contact materials by mechanochemical synthesis route,” Indian Journal of Pure and Applied Physics, vol. 45, no. 1, pp. 9–15, 2007. View at Scopus
  21. M. S. Park, T.-H. Lim, T. -M Jeon, J.-G. Kim, and M. S. Gong, “Preparation of new polyelectrolyte/silver nanocomposites and their humidity-sensitive properties,” Macromolecular Research, vol. 16, no. 4, pp. 308–313, 2008. View at Publisher · View at Google Scholar
  22. B. Wiley, Y. Sun, and Y. Xia, “Polyol synthesis of silver nanostructures: control of product morphology with Fe(II) or Fe(III) Species,” Langmuir, vol. 21, no. 18, pp. 8077–8080, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Xia, “One-dimensional nanostructures: synthesis, characterization, and applications,” Advanced Materials, vol. 15, no. 5, pp. 353–389, 2003. View at Publisher · View at Google Scholar
  24. C. Ducamp-Sanguesa, R. Herrera-Urbina, and M. Figlarz, “Synthesis and characterization of fine and monodisperse silver particles of uniform shape,” Journal of Solid State Chemistry, vol. 100, no. 2, pp. 272–280, 1992. View at Scopus
  25. J. Mullin, Crystallization, Oxford University Press, New York, NY, USA, 1997.
  26. L. D. Marks, “Experimental studies of small particle structures,” Reports on Progress in Physics, vol. 57, no. 6, pp. 603–649, 1994. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Sun, B. Mayers, T. Herricks, and Y. Xia, “Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence,” Nano Letters, vol. 3, no. 7, pp. 955–960, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. X. L. Tang, M. Tsuji, M. Nishio, and P. Jiang, “Roles of chloride anions in the shape evolution of anisotropic silver nanostructures in poly(vinylpyrrolidone) (PVP)-assisted polyol process,” Bulletin of the Chemical Society of Japan, vol. 82, no. 10, pp. 1304–1312, 2009. View at Publisher · View at Google Scholar
  29. Z. L. Wang, T. S. Ahmad, and M. A. El-Sayed, “Steps, ledges and kinks on the surfaces of platinum nanoparticles of different shapes,” Surface Science, vol. 380, no. 2-3, pp. 302–310, 1997. View at Publisher · View at Google Scholar
  30. P. R. Sajanlal, T. S. Sreeprasad, A. K. Samal, and T. Pradeep, “Anisotropic nanomaterials: structure, growth, assembly, and functions,” Nano Reviews, vol. 2, p. 5883, 2011. View at Publisher · View at Google Scholar
  31. E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, “DNA-templated assembly and electrode attachment of a conducting silver wire,” Nature, vol. 391, no. 6669, pp. 775–778, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. K. E. Korte, S. E. Skrabalak, and Y. Xia, “Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process,” Journal of Materials Chemistry, vol. 18, pp. 437–441, 2008. View at Publisher · View at Google Scholar
  33. T. Itakura, K. Torigoe, and K. Esumi, “Preparation and characterization of ultrafine metal particles in ethanol by UV irradiation using a photoinitiator,” Langmuir, vol. 11, no. 10, pp. 4129–4134, 1995. View at Scopus
  34. M. A. El-Sayed, “Some Interesting properties of metals confined in time and nanometer space of different shapes,” Accounts of Chemical Research, vol. 34, no. 4, pp. 257–264, 2001. View at Publisher · View at Google Scholar
  35. S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” The Journal of Physical Chemistry B, vol. 103, no. 16, pp. 3073–3077, 1999. View at Publisher · View at Google Scholar