About this Journal Submit a Manuscript Table of Contents
ISRN Nanomaterials
Volume 2012 (2012), Article ID 502960, 9 pages
http://dx.doi.org/10.5402/2012/502960
Research Article

Synthesis of High Aspect-Ratio Gold Nanowires with Highly Porous Morphology

School of Chemical and Physical Sciences, Flinders University, Adelaide, SA 5001, Australia

Received 4 April 2012; Accepted 8 May 2012

Academic Editors: S.-H. Kim, W. Lee, and M. Mirzaei

Copyright © 2012 Lucas P. Johnson and Janis G. Matisons. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Wang, R. Polsky, and D. Xu, “Silver-enhanced colloidal gold electrochemical stripping detection of DNA hybridization,” Langmuir, vol. 17, no. 19, pp. 5739–5741, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Wang, D. Xu, and R. Polsky, “Magnetically-induced solid-state electrochemical detection of DNA hybridization,” Journal of the American Chemical Society, vol. 124, no. 16, pp. 4208–4209, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Thompson, “New advances in gold catalysis part II,” Gold Bulletin, vol. 32, no. 1, pp. 12–19, 1999. View at Scopus
  4. D. Thompson, “New advances in gold catalysis part I,” Gold Bulletin, vol. 31, no. 4, pp. 111–118, 1998. View at Scopus
  5. D. Andreeva, “Low temperature water gas shift over gold catalysts,” Gold Bulletin, vol. 35, no. 3, pp. 82–88, 2002. View at Scopus
  6. R. Grisel, K. J. Weststrate, A. Gluhoi, and B. E. Nieuwenhuys, “Catalysis by gold nanoparticles,” Gold Bulletin, vol. 35, no. 2, pp. 39–45, 2002. View at Scopus
  7. D. A. H. Cunningham, W. Vogel, R. M. Torres-Sanchez, K. Tanaka, and M. Haruta, “Structural analysis of Au/TiO2 catalysts by Debye function analysis,” Journal of Catalysis, vol. 183, no. 1, pp. 24–31, 1999. View at Scopus
  8. A. Ueda and M. Haruta, “Nitric oxide reduction with hydrogen, carbon monoxide, and hydrocarbons over gold catalysts,” Gold Bulletin, vol. 32, no. 1, pp. 3–11, 1999. View at Scopus
  9. T. Herranz, X. Deng, A. Cabot et al., “Reactivity of Au nanoparticles supported over SiO2 and TiO2 studied by ambient pressure photoelectron spectroscopy,” Catalysis Today, vol. 143, no. 1-2, pp. 158–166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Xiao, F. Patolsky, E. Katz, J. F. Hainfeld, and I. Willner, “Plugging into enzymes: nanowiring of redox enzymes by a gold nanoparticle,” Science, vol. 299, no. 5614, pp. 1877–1881, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. L. He, M. D. Musick, S. R. Nicewarner et al., “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” Journal of the American Chemical Society, vol. 122, no. 38, pp. 9071–9077, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Andreescu and L. A. Luck, “Studies of the binding and signaling of surface-immobilized periplasmic glucose receptors on gold nanoparticles: a glucose biosensor application,” Analytical Biochemistry, vol. 375, no. 2, pp. 282–290, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. C. R. Raj and B. K. Jena, “Efficient electrocatalytic oxidation of NADH at gold nanoparticles self-assembled on three-dimensional sol-gel network,” Chemical Communications, no. 15, pp. 2005–2007, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Liu, J. Tang, and L. Jiang, “The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity,” Biochemical and Biophysical Research Communications, vol. 313, no. 1, pp. 3–7, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nature Biotechnology, vol. 23, no. 6, pp. 741–745, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. G. C. Bond, “Gold: a relatively new catalyst,” Gold Bulletin, vol. 34, no. 4, pp. 117–119, 2001. View at Scopus
  17. M. Valden, X. Lai, and D. W. Goodman, “Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties,” Science, vol. 281, no. 5383, pp. 1647–1650, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. B. E. Salisbury, W. T. Wallace, and R. L. Whetten, “Low-temperature activation of molecular oxygen by gold clusters: a stoichiometric process correlated to electron affinity,” Chemical Physics, vol. 262, no. 1, pp. 131–141, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Prati and G. Martra, “New gold catalysts for liquid phase oxidation,” Gold Bulletin, vol. 32, no. 3, pp. 96–101, 1999. View at Scopus
  20. Y. Yuan, A. P. Kozlova, K. Asakura, H. Wan, K. Tsai, and Y. Iwasawa, “Supported Au catalysts prepared from Au phosphine complexes and as-precipitated metal hydroxides: characterization and low-temperature CO oxidation,” Journal of Catalysis, vol. 170, no. 1, pp. 191–199, 1997. View at Scopus
  21. H. S. Oh, J. H. Yang, C. K. Costello, et al., “Selective catalytic oxidation of CO: effect of chloride on supported Au catalysts,” Journal of Catalysis, vol. 210, no. 2, pp. 375–386, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Li, H. J. Schluesener, and S. Xu, “Gold nanoparticle-based biosensors,” Gold Bulletin, vol. 43, no. 1, pp. 29–41, 2010. View at Scopus
  23. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chemical Reviews, vol. 105, no. 4, pp. 1025–1102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. N. L. Rosi and C. A. Mirkin, “Nanostructures in biodiagnostics,” Chemical Reviews, vol. 105, no. 4, pp. 1547–1562, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” Journal of Physical Chemistry B, vol. 101, no. 19, pp. 3706–3712, 1997. View at Scopus
  26. K. Rahme, F. Gauffre, J. D. Marty, B. Payré, and C. Mingotaud, “A systematic study of the stabilization in water of gold nanoparticles by poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers,” Journal of Physical Chemistry C, vol. 111, no. 20, pp. 7273–7279, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Xu, X. Xu, J. Su, and Y. Ding, “Research on unsupported nanoporous gold catalyst for CO oxidation,” Journal of Catalysis, vol. 252, no. 2, pp. 243–248, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Kim, E. Samano, and B. E. Koel, “Oxygen adsorption and oxidation reactions on Au(2 1 1) surfaces: exposures using O2 at high pressures and ozone (O3) in UHV,” Surface Science, vol. 600, no. 19, pp. 4622–4632, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Zielasek, “Gold catalysts: nanoporous gold foams,” Angewandte Chemie, vol. 45, no. 48, pp. 8241–8244, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. M. M. Biener, J. Biener, and C. M. Friend, “Enhanced transient reactivity of an O-sputtered Au(1 1 1) surface,” Surface Science, vol. 590, no. 2-3, pp. L259–L265, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. N. R. Sieb, N. C. Wu, E. Majidi, R. Kukreja, N. R. Branda, and B. D. Gates, “Hollow metal nanorods with tunable dimensions, porosity, and photonic properties,” ACS Nano, vol. 3, no. 6, pp. 1365–1372, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Mohl, A. Jumar, A. L. Reddy, et al., “Synthesis of catalytic porous metallic nanorods by galvanic exchange reaction,” Journal of Physical Chemistry C, vol. 114, no. 1, pp. 389–393, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Ji and P. C. Searson, “Fabrication of nanoporous gold nanowires,” Applied Physics Letters, vol. 81, no. 23, pp. 4437–4439, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Burdick, E. Alonas, H. C. Huang, K. Rege, and J. Wang, “High-throughput templated multisegment synthesis of gold nanowires and nanorods,” Nanotechnology, vol. 20, no. 6, Article ID 065306, 6 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. S. H. Yoo and S. Park, “Platinum-coated, nanoporous gold nanorod arrays: synthesis and characterization,” Advanced Materials, vol. 19, no. 12, pp. 1612–1615, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. Z. Liu and P. C. Searson, “Single nanoporous gold nanowire sensors,” Journal of Physical Chemistry B, vol. 110, no. 9, pp. 4318–4322, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Ji and P. C. Searson, “Synthesis and characterization of nanoporous gold nanowires,” Journal of Physical Chemistry B, vol. 107, no. 19, pp. 4494–4499, 2003. View at Scopus
  38. C. Ji, G. Oskam, Y. Ding, J. D. Erlebacher, A. J. Wagner, and P. C. Searson, “Deposition of AuxAg1-x/AuyAg1-y multilayers and multisegment nanowires,” Journal of the Electrochemical Society, vol. 150, no. 8, pp. C523–C528, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Liu, W. Lee, Z. Huang, R. Scholz, and U. Gösele, “Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane,” Nanotechnology, vol. 19, no. 33, Article ID 335604, 6 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. S. R. Nicewarner-Peña, R. G. Freeman, B. D. Reiss et al., “Submicrometer metallic barcodes,” Science, vol. 294, no. 5540, pp. 137–141, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. B. R. Martin, D. J. Dermody, B. D. Reiss et al., “Orthogonal self-assembly on colloidal gold-platinum nanorods,” Advanced Materials, vol. 11, no. 12, pp. 1021–1025, 1999. View at Scopus
  42. G. E. Possin, “A method for forming very small diameter wires,” Review of Scientific Instruments, vol. 41, no. 5, pp. 772–774, 1970. View at Publisher · View at Google Scholar · View at Scopus
  43. W. D. Williams and N. Giordano, “Fabrication of 80 Å metal wires,” Review of Scientific Instruments, vol. 55, no. 3, pp. 410–412, 1984. View at Publisher · View at Google Scholar · View at Scopus
  44. J. T. Masden and N. Giordano, “Localization and electron-electron interaction effects in thin Pt wires,” Physical Review B, vol. 31, no. 10, pp. 6395–6401, 1985. View at Publisher · View at Google Scholar · View at Scopus
  45. R. M. Penner and C. R. Martin, “Preparation and electrochemical characterization of ultramicroelectrode ensembles,” Analytical, vol. 59, no. 21, pp. 2625–2630, 1987. View at Scopus
  46. C. R. Martin, “Template synthesis of polymeric and metal microtubules,” Advanced Materials, vol. 3, no. 9, pp. 457–459, 1991. View at Scopus
  47. C. K. Preston and M. Moskovits, “Optical characterization of anodic aluminum oxide films containing electrochemically deposited metal particles. 1. Gold in phosphoric acid anodic aluminum oxide films,” Journal of Physical Chemistry, vol. 97, no. 32, pp. 8495–8503, 1993. View at Scopus
  48. D. Al-Mawlawi, C. Z. Liu, and M. Moskovits, “Nanowires formed in anodic oxide nanotemplates,” Journal of Materials Research, vol. 9, no. 4, pp. 1014–1018, 1994. View at Scopus
  49. J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, “Evolution of nanoporosity in dealloying,” Nature, vol. 410, no. 6827, pp. 450–453, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Erlebacher, “An atomistic description of dealloying porosity evolution, the critical potential, and rate-limiting behavior,” Journal of the Electrochemical Society, vol. 151, no. 10, pp. C614–C626, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. H. W. Pickering and C. Wagner, “Electrolytic dissolution of binary alloys containing a noble metal,” Journal of the Electrochemical Society, vol. 114, no. 7, pp. 698–706, 1967.
  52. Z. Gu, H. Ye, D. Smirnova, D. Small, and D. H. Gracias, “Reflow and electrical characteristics of nanoscale solder,” Small, vol. 2, no. 2, pp. 225–229, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Schönenberger, B. M. I. van der Zande, L. G. J. Fokkink et al., “Template synthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology,” Journal of Physical Chemistry B, vol. 101, no. 28, pp. 5497–5505, 1997. View at Scopus
  54. M. Tian, J. Wang, J. Kurtz, T. E. Mallouk, and M. H. W. Chan, “Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism,” Nano Letters, vol. 3, no. 7, pp. 919–923, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Y. Apel, I. V. Blonskaya, S. N. Dmitriev, O. L. Orelovitch, and B. Sartowska, “Structure of polycarbonate track-etch membranes: origin of the “paradoxical” pore shape,” Journal of Membrane Science, vol. 282, no. 1-2, pp. 393–400, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. C. R. Martin, “Nanomaterials: a membrane-based synthetic approach,” Science, vol. 266, no. 5193, pp. 1961–1966, 1994. View at Scopus
  57. T. M. Whitney, J. S. Jiang, P. C. Searson, and C. L. Chien, “Fabrication and magnetic properties of arrays of metallic nanowires,” Science, vol. 261, no. 5126, pp. 1316–1319, 1993. View at Scopus
  58. C. J. Brumlik and C. R. Martin, “Template synthesis of metal microtubules,” Journal of the American Chemical Society, vol. 113, no. 8, pp. 3174–3175, 1991. View at Scopus
  59. C. J. Brumlik, V. P. Menon, and C. R. Martin, “Template synthesis of metal microtubule ensembles utilizing chemical, electrochemical, and vacuum deposition techniques,” Journal of Materials Research, vol. 9, no. 5, pp. 1174–1183, 1994. View at Scopus
  60. C. A. Foss, M. J. Tierney, and C. R. Martin, “Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory,” Journal of Physical Chemistry, vol. 96, no. 22, pp. 9001–9007, 1992. View at Scopus
  61. H. W. Wang, C. F. Shieh, H. Y. Chen, W. C. Shiu, B. Russo, and G. Cao, “Standing [111] gold nanotube to nanorod arrays via template growth,” Nanotechnology, vol. 17, no. 10, pp. 2689–2694, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Kumar, R. Kumar, S. Kumar, and S. K. Chakarvarti, “Electrochemical synthesis of metallic microstructures using etched ion tracks in nuclear track filters,” Current Science, vol. 87, no. 5, pp. 642–645, 2004. View at Scopus
  63. R. K. Pandey, S. N. Sahu, and S. Chandra, Handbook of Semiconductor Electrodeposition, CRC Press, New York, NY, USA, 1996.
  64. A. Ertan, S. N. Tewari, and O. Talu, “Electrodeposition of nickel nanowires and nanotubes using various templates,” Journal of Experimental Nanoscience, vol. 3, no. 4, pp. 287–295, 2008.
  65. A. Ertan, S. N. Tewari, and O. Talu, “Electrodeposition of nickel nanowires and nanotubes using various templates,” Journal of Experimental Nanoscience, vol. 3, no. 4, pp. 287–295, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. D. F. Schriver and P. W. Atkins, Inorganic Chemistry, Oxford University Press, Oxford, UK, 3rd edition, 1999.
  67. T. C. Kuo, L. A. Sloan, J. V. Sweedler, and P. W. Bohn, “Manipulating molecular transport through nanoporous membranes by control of electrokinetic flow: effect of surface charge density and Debye length,” Langmuir, vol. 17, no. 20, pp. 6298–6303, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. E. Seker, M. L. Reed, and M. R. Begley, “Nanoporous gold: fabrication, characterization, and applications,” Materials, vol. 2, no. 4, pp. 2188–2215, 2009.
  69. M. Hakamada and M. Mabuchi, “Microstructural evolution in nanoporous gold by thermal and acid treatments,” Materials Letters, vol. 62, no. 3, pp. 483–486, 2008. View at Publisher · View at Google Scholar · View at Scopus