About this Journal Submit a Manuscript Table of Contents
ISRN Nanomaterials
Volume 2012 (2012), Article ID 816474, 8 pages
http://dx.doi.org/10.5402/2012/816474
Research Article

Titanium Dioxide Nanofibers and Microparticles Containing Nickel Nanoparticles

1Department of Chemistry, University of Texas-Pan American, Edinburg, TX 78539, USA
2DTU Food, Technical University of Denmark, Soltofts Plads, Building 227 2800 Kgs. Lyngby, Denmark
3Department of Bio and Nano System Engineering, College of Engineering, Chonbuk National University, Jeonju 561-756, Republic of Korea
4Department of Mechanical Design and Materials Engineering, Chonbuk National University, Jeonju 561-756, Republic of Korea
5National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
6Department of Environmental Engineering and Biotechnology, Energy & Environment Fusion Technology Center, Myongji University, Kyonggi-do, Yongin 449-728, Republic of Korea

Received 30 September 2012; Accepted 18 October 2012

Academic Editors: J. Bai, G. Dzhardimalieva, T. Peijs, and X. Sun

Copyright © 2012 Faheem A. Sheikh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. de Battista, R. J. Mantz, and F. Garelli, “Power conditioning for a wind-hydrogen energy system,” Journal of Power Sources, vol. 155, no. 2, pp. 478–486, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Miland, R. Glöckner, P. Taylor, R. Jarle Aaberg, and G. Hagen, “Load control of a wind-hydrogen stand-alone power system,” International Journal of Hydrogen Energy, vol. 31, no. 9, pp. 1215–1235, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. R. J. Farrauto, “Introduction to solid polymer membrane fuel cells and reforming natural gas for production of hydrogen,” Applied Catalysis B, vol. 56, no. 1-2, pp. 3–7, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Heinzel, B. Vogel, and P. Hübner, “Reforming of natural gas—hydrogen generation for small scale stationary fuel cell systems,” Journal of Power Sources, vol. 105, no. 2, pp. 202–207, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. G. J. Stiegel and M. Ramezan, “Hydrogen from coal gasification: an economical pathway to a sustainable energy future,” International Journal of Coal Geology, vol. 65, no. 3-4, pp. 173–190, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. E. E. Iojoiu, M. E. Domine, T. Davidian, N. Guilhaume, and C. Mirodatos, “Hydrogen production by sequential cracking of biomass-derived pyrolysis oil over noble metal catalysts supported on ceria-zirconia,” Applied Catalysis A, vol. 323, pp. 147–161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. S. C. Amendola, S. L. Sharp-Goldman, M. S. Janjua et al., “Safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst,” International Journal of Hydrogen Energy, vol. 25, no. 10, pp. 969–975, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. J. H. Kim, K. T. Kim, Y. M. Kang et al., “Study on degradation of filamentary Ni catalyst on hydrolysis of sodium borohydride,” Journal of Alloys and Compounds, vol. 379, no. 1-2, pp. 222–227, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. J. J. Vajo, S. L. Skeith, F. Mertens, and S. W. Jorgensen, “Hydrogen-generating solid-state hydride/hydroxide reactions,” Journal of Alloys and Compounds, vol. 390, no. 1-2, pp. 55–61, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. J. O. Jensen, Q. Li, R. He, C. Pan, and N. J. Bjerrum, “100–200 °C polymer fuel cells for use with NaAlH4,” Journal of Alloys and Compounds, vol. 404–406, pp. 653–656, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Kojima, K. I. Suzuki, and Y. Kawai, “Hydrogen generation from lithium borohydride solution over nano-sized platinum dispersed on LiCoO2,” Journal of Power Sources, vol. 155, no. 2, pp. 325–328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. H. I. Schlesinger, H. C. Brown, A. E. Finholt, J. R. Gilbreath, H. R. Hoekstra, and E. K. Hyde, “Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen,” Journal of the American Chemical Society, vol. 75, no. 1, pp. 215–219, 1953. View at Scopus
  13. D. Hua, Y. Hanxi, A. Xinping, and C. Chuansin, “Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst,” International Journal of Hydrogen Energy, vol. 28, no. 10, pp. 1095–1100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Zahmakiran and S. Özkar, “Water dispersible acetate stabilized ruthenium(0) nanoclusters as catalyst for hydrogen generation from the hydrolysis of sodium borohyride,” Journal of Molecular Catalysis A, vol. 258, no. 1-2, pp. 95–103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. A. Ritter, A. D. Ebner, J. Wang, and R. Zidan, “Implementing a hydrogen economy,” Materials Today, vol. 6, no. 9, pp. 18–23, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. J. H. Kim, H. Lee, S. C. Han, H. S. Kim, M. S. Song, and J. Y. Lee, “Production of hydrogen from sodium borohydride in alkaline solution: development of catalyst with high performance,” International Journal of Hydrogen Energy, vol. 29, no. 3, pp. 263–267, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. D. L. Calabretta and B. R. Davis, “Investigation of the anhydrous molten Na–B–O–H system and the concept: electrolytic hydriding of sodium boron oxide species,” Journal of Power Sources, vol. 164, no. 2, pp. 782–791, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Kojima, K. I. Suzuki, K. Fukumoto et al., “Development of 10 kW-scale hydrogen generator using chemical hydride,” Journal of Power Sources, vol. 125, no. 1, pp. 22–26, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Patel, B. Patton, C. Zanchetta et al., “Pd–C powder and thin film catalysts for hydrogen production by hydrolysis of sodium borohydride,” International Journal of Hydrogen Energy, vol. 33, no. 1, pp. 287–292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. J. S. Zhang, W. N. Delgass, T. S. Fisher, and J. P. Gore, “Kinetics of Ru-catalyzed sodium borohydride hydrolysis,” Journal of Power Sources, vol. 164, no. 2, pp. 772–781, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Ye, H. Zhang, D. Xu, L. Ma, and B. Yi, “Hydrogen generation utilizing alkaline sodium borohydride solution and supported cobalt catalyst,” Journal of Power Sources, vol. 164, no. 2, pp. 544–548, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S. U. Jeong, R. K. Kim, E. A. Cho et al., “A study on hydrogen generation from NaBH4 solution using the high-performance Co–B catalyst,” Journal of Power Sources, vol. 144, no. 1, pp. 129–134, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. O. Metin and S. Özkar, “Hydrogen generation from the hydrolysis of sodium borohydride by using water dispersible, hydrogenphosphate-stabilized nickel(0) nanoclusters as catalyst,” International Journal of Hydrogen Energy, vol. 32, no. 12, pp. 1707–1715, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. J. C. Ingersoll, N. Mani, J. C. Thenmozhiyal, and A. Muthaiah, “Catalytic hydrolysis of sodium borohydride by a novel nickel-cobalt-boride catalyst,” Journal of Power Sources, vol. 173, no. 1, pp. 450–457, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Peña-Alonso, A. Sicurelli, E. Callone, G. Carturan, and R. Raj, “A picoscale catalyst for hydrogen generation from NaBH4 for fuel cells,” Journal of Power Sources, vol. 165, no. 1, pp. 315–323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Ziabari, V. Mottaghitalab, and A. K. Haghi, “A new approach for optimization of electrospun nanofiber formation process,” Korean Journal of Chemical Engineering, vol. 27, no. 1, pp. 340–354, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. G. T. Kim, Y. C. Ahn, and J. K. Lee, “Characteristics of Nylon 6 nanofilter for removing ultra fine particles,” Korean Journal of Chemical Engineering, vol. 25, no. 2, pp. 368–372, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. F. A. Sheikh, N. A. M. Barakat, M. A. Kanjwal, S. J. Park, D. K. Park, and H. Y. Kim, “Synthesis of poly(vinyl alcohol) (PVA) nanofibers incorporating hydroxyapatite nanoparticles as future implant materials,” Macromolecular Research, vol. 18, no. 1, pp. 59–66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. A. Kanjwal, N. A. M. Barakat, F. A. Sheikh, W. I. Baek, M. S. Khil, and H. Y. Kim, “Effects of silver content and morphology on the catalytic activity of silver-grafted titanium oxide nanostructure,” Fibers and Polymers, vol. 11, no. 5, pp. 700–709, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Chen and H. Kim, “Use of a nickel-boride-silica nanocomposite catalyst prepared by in-situ reduction for hydrogen production from hydrolysis of sodium borohydride,” Fuel Processing Technology, vol. 89, no. 10, pp. 966–972, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. F. A. Sheikh, M. A. Kanjwal, H. Y. Kim, and H. Kim, “Fabrication of titanium dioxide nanofibers containing hydroxyapatite nanoparticles,” Applied Surface Science, vol. 257, no. 1, pp. 296–301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. F. A. Sheikh, N. A. M. Barakat, M. A. Kanjwal et al., “Electrospun titanium dioxide nanofibers containing hydroxyapatite and silver nanoparticles as future implant materials,” Journal of Materials Science: Materials in Medicine, vol. 21, no. 9, pp. 2551–2559, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. F. A. Sheikh, N. A. M. Barakat, M. A. Kanjwal, S. H. Jeon, H. S. Kang, and H. Y. Kim, “Self synthesize of silver nanoparticles in/on polyurethane nanofibers: nano-biotechnological approach,” Journal of Applied Polymer Science, vol. 115, no. 6, pp. 3189–3198, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. M. A. Kanjwal, N. A. M. Barakat, F. A. Sheikh, M. S. Khil, and H. Y. Kim, “Functionalization of electrospun titanium oxide nanofibers with silver nanoparticles: strongly effective photocatalyst,” International Journal of Applied Ceramic Technology, vol. 7, no. 1, pp. E54–E63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. JCDPS card no 21-1272.
  36. JCDPS card no 7440-02-0.