About this Journal Submit a Manuscript Table of Contents
ISRN Nanomaterials
Volume 2012 (2012), Article ID 865373, 8 pages
http://dx.doi.org/10.5402/2012/865373
Research Article

Synthesis and Optical Characterization of Mg1-xNixO Nanostructures

1Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016, India
2Bio-Inspired Materials and Devices Laboratory (BMDL), Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, VA 24061, USA
3Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India

Received 23 September 2012; Accepted 11 October 2012

Academic Editors: C. Angeles-Chavez, B. A. Marinkovic, and B. Panchapakesan

Copyright © 2012 Nageswararao Budiredla et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Riedel and I.-W. Chen, Ceramics Science and Technology: Materials and Properties, vol. 2, Wiley-VCH, Weinheim, Germany, 2010.
  2. N. A. Vasil'eva and N. F. Uvarov, “Electrical conductivity of magnesium oxide as a catalyst for radical chain hydrocarbon pyrolysis reactions,” Kinetics and Catalysis, vol. 52, no. 1, pp. 98–103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. S. A. El-Molla, S. M. Abdel-all, and M. M. Ibrahim, “Influence of precursor of MgO and preparation conditions on the catalytic dehydrogenation of iso-propanol over CuO/MgO catalysts,” Journal of Alloys and Compounds, vol. 484, no. 1-2, pp. 280–285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. A. Shah and F. M. Al-Marzouki, “Bio-safe approach for the preparation of magnesium oxide (MgO) nanoflowers at very low temperature,” International Journal of Biomedical Nanoscience and Nanotechnology, vol. 1, pp. 10–16, 2010.
  5. A. Kumar and J. Kumar, “On the synthesis and optical absorption studies of nano-size magnesium oxide powder,” Journal of Physics and Chemistry of Solids, vol. 69, no. 11, pp. 2764–2772, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. A. Yar, M. Montazerian, H. Abdizadeh, and H. R. Baharvandi, “Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO,” Journal of Alloys and Compounds, vol. 484, no. 1-2, pp. 400–404, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. H. Tamboli, V. Puri, and R. K. Puri, “Improvement in adhesion and decrease in stress of MgO thin films due to vapour chopping,” Journal of Alloys and Compounds, vol. 503, no. 1, pp. 224–227, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Kumar, S. Thota, S. Varma, and J. Kumar, “Sol-gel synthesis of highly luminescent magnesium oxide nanocrystallites,” Journal of Luminescence, vol. 131, no. 4, pp. 640–648, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. J.-S. Choi, S.-H. Moon, J.-H. Kim, and G.-H. Kim, “The effects of high purity MgO nano-powders on the electrical properties of AC-PDPs,” Current Applied Physics, vol. 10, no. 6, pp. 1378–1382, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. M. E. Raj, T. Som, V. Ganesan et al., “Tailoring optical and electrical properties of MgO thin films by 1.5 MeV H+ implantation to fluences,” Nuclear Instruments and Methods in Physics Research B, vol. 266, no. 11, pp. 2564–2571, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. L. A. Ma, Z. X. Lin, J. Y. Lin, Y. A. Zhang, L. Q. Hu, and T. L. Guo, “Large-scale growth of ultrathin MgO nanowires and evaluate their field emission properties,” Physica E, vol. 41, no. 8, pp. 1500–1503, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. H. Zhang, X. L. Zhou, and J. A. Wang, “Water promotion or inhibition effect on isopropanol decomposition catalyzed with a sol-gel MgO-Al2O3 catalyst,” Journal of Molecular Catalysis A, vol. 247, no. 1-2, pp. 222–226, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Gu, C. Li, H. Cao et al., “Crystallinity of Li-doped MgO:Dy3+ nanocrystals via combustion process and their photoluminescence properties,” Journal of Alloys and Compounds, vol. 453, no. 1-2, pp. 361–365, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. L.-Z. Peia, L.-Z. Yinb, J.-F. Wanga, J. Chena, C.-G. Fana, and Q.-F. Zhanga, “Low temperature synthesis of magnesium oxide and spinel powders by a sol-gel process,” Materials Research, vol. 13, no. 3, pp. 339–343, 2010. View at Scopus
  15. M. Nusheh, H. Yoozbashizadeh, M. Askari, H. Kobatake, and H. Fukuyama, “Mechanically activated synthesis of single crystalline MgO nanostructures,” Journal of Alloys and Compounds, vol. 506, no. 2, pp. 715–720, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Narayan, S. Nori, D. K. Pandya, D. K. Avasthi, and A. I. Smirnov, “Defect dependent ferromagnetism in MgO doped with Ni and Co,” Applied Physics Letters, vol. 93, no. 8, Article ID 082507, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Wang, X. Qiao, J. Chen, and F. Tan, “Preparation and characterization of Ti-doped MgO nanopowders by a modified coprecipitation method,” Journal of Alloys and Compounds, vol. 461, no. 1-2, pp. 542–546, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Gu, S. F. Wang, M. K. Lü et al., “Combustion synthesis and luminescence properties of Dy3+-doped MgO nanocrystals,” Journal of Crystal Growth, vol. 260, no. 3-4, pp. 507–510, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Wang, X. Qiao, J. Chen, F. Tan, and H. Li, “Influence of titanium doping on the structure and morphology of MgO prepared by coprecipitation method,” Materials Characterization, vol. 60, no. 8, pp. 858–862, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. L. G. Ferguson and F. Dogan, “Spectral analysis of transition metal-doped MgO “matched emitters” for thermophotovoltaic energy conversion,” Journal of Materials Science, vol. 37, no. 7, pp. 1301–1308, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Basu, Y.-B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices—a review,” International Journal of Energy Research, vol. 31, no. 6-7, pp. 689–716, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Kumar and J. Kumar, “Perspective on europium activated fine-grained metal molybdate phosphors for solid state illumination,” Journal of Materials Chemistry, vol. 21, no. 11, pp. 3788–3795, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Yoshida, T. Tanaka, H. Yoshida, T. Funabiki, and S. Yoshida, “Study on the dispersion of nickel ions in the NiO-MgO system by x-ray absorption fine structure,” Journal of Physical Chemistry, vol. 100, no. 6, pp. 2302–2309, 1996. View at Scopus
  24. F. Arena, A. L. Chuvilin, and A. Parmaliana, “Characterization of Li-doped Ni/MgO catalysts,” Journal of Physical Chemistry, vol. 99, no. 3, pp. 990–998, 1995. View at Scopus
  25. S. Bhatia, N. A. Binti Mohd Zabidi, and M. H. A. R. Bin Megat Ahmad, “Catalytic activity and morphological properties of Ni/MgO catalysts for the oxidative coupling of methane,” Reaction Kinetics and Catalysis Letters, vol. 74, no. 1, pp. 87–92, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. M. H. Lee and D. G. Park, “Preparation of MgO with high surface area, and modification of its pore characteristics,” Bulletin of the Korean Chemical Society, vol. 24, no. 10, pp. 1437–1443, 2003. View at Scopus
  27. L. Delle Site, A. Alavi, and R. M. Lynden-Bell, “The structure and spectroscopy of monolayers of water on MgO: an ab initio study,” Journal of Chemical Physics, vol. 113, no. 8, pp. 3344–3350, 2000. View at Scopus
  28. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, John Wiley & Sons, London, UK, 1963.
  29. A. Kumar and J. Kumar, “Defect and adsorbate induced infrared modes in sol-gel derived magnesium oxide nano-crystallites,” Solid State Communications, vol. 147, no. 9-10, pp. 405–408, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. M. A. Shah and A. Qurashi, “Novel surfactant-free synthesis of MgO nanoflakes,” Journal of Alloys and Compounds, vol. 482, no. 1-2, pp. 548–551, 2009. View at Publisher · View at Google Scholar · View at Scopus