About this Journal Submit a Manuscript Table of Contents
ISRN Nanomaterials
Volume 2012 (2012), Article ID 909647, 13 pages
http://dx.doi.org/10.5402/2012/909647
Research Article

Optimization of the Synthesis of Nanostructured Tungsten-Molybdenum Bimetallic Oxide

1Petroleum Refining Division, Department of Catalysis, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
2Department of Chemistry, Faculty of Science, Helwan University, Helwan 11421, Egypt

Received 16 May 2012; Accepted 10 June 2012

Academic Editors: R. Azimirad, C. Li, and F. Miao

Copyright © 2012 H. Hassan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y.-C. Nah, A. Ghicov, D. Kim, and P. Schmuki, “Enhanced electrochromic properties of self-organized nanoporous WO3,” Electrochemistry Communications, vol. 10, no. 11, pp. 1777–1780, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. O. Marin-Flores, T. Turba, J. Breit, M. Norton, and S. Ha, “Thermodynamic and experimental study of the partial oxidation of a Jet A fuel surrogate over molybdenum dioxide,” Applied Catalysis A, vol. 381, no. 1-2, pp. 18–25, 2010.
  3. W. W. Qu and W. Wlodarski, “A thin-film sensing element for ozone, humidity and temperature,” Sensors and Actuators B, vol. 64, no. 1–3, pp. 42–48, 2000. View at Scopus
  4. S. Morandi, G. Ghiotti, A. Chiorino, B. Bonelli, E. Comini, and G. Sberveglieri, “MoO3-WO3 mixed oxide powder and thin films for gas sensing devices: a spectroscopic characterisation,” Sensors and Actuators B, vol. 111-112, pp. 28–35, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Lokhat, M. Starzak, and M. Stelmachowski, “Gas-phase metathesis of 1-hexene over a WO3/SiO2 catalyst: search for optimal reaction conditions,” Applied Catalysis A, vol. 351, no. 2, pp. 137–147, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Lu, X. Li, Z. Qu, Y. Wang, and G. Chen, “Selective oxidation of cyclopentene to glutaraldehyde over the WO3/SiO2 catalyst,” Applied Surface Science, vol. 255, no. 5, part 2, pp. 3117–3120, 2008. View at Publisher · View at Google Scholar
  7. T. Ivanova, K. A. Gesheva, G. Popkirov, M. Ganchev, and E. Tzvetkova, “Electrochromic properties of atmospheric CVD MoO3 and MoO3-WO3 films and their application in electrochromic devices,” Materials Science and Engineering B, vol. 119, no. 3, pp. 232–239, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Genin, A. Driouiche, B. Gérand, and M. Figlarz, “Hydrogen bronzes of new oxides of the WO3-MoO3 system with hexagonal, pyrochlore and ReO3-type structures,” Solid State Ionics, vol. 53–56, no. 1, pp. 315–323, 1992. View at Scopus
  9. J. Purans, A. Kuzmin, P. Parent, and H. Dexpert, “In situ XAFS study of phase transitions and hydrogen intercalation in WO3-MoO3 system,” Physica B, vol. 208-209, pp. 707–708, 1995. View at Scopus
  10. C.-Y. Su, C.-K. Lin, T.-K. Yang, H.-C. Lin, and C.-T. Pan, “Oxygen partial pressure effect on the preparation of nanocrystalline tungsten oxide powders by a plasma arc gas condensation technique,” International Journal of Refractory Metals and Hard Materials, vol. 26, no. 5, pp. 423–428, 2008. View at Publisher · View at Google Scholar
  11. A. F. Fuentes, O. Hernández-Ibarra, G. Mendoza-Suarez, J. I. Escalante-García, K. Boulahya, and U. Amador, “Structural analysis of several W(VI) and Mo(VI) complex perovskites prepared by the polymeric precursors method,” Journal of Solid State Chemistry, vol. 173, no. 2, pp. 319–327, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. C. A. Kodaira, H. F. Brito, O. L. Malta, and O. A. Serra, “Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method,” Journal of Luminescence, vol. 101, no. 1-2, pp. 11–21, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Galatsis, Y. X. Li, W. Wlodarski et al., “Comparison of single and binary oxide MoO3, TiO2 and WO3 sol-gel gas sensors,” Sensors and Actuators B, vol. 83, no. 1–3, pp. 276–280, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Malagù, M. C. Carotta, S. Morandi et al., “Surface barrier modulation and diffuse reflectance spectroscopy of MoO3-WO3 thick films,” Sensors and Actuators B, vol. 118, no. 1-2, pp. 94–97, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Zhu, H. Li, X. He, Q. Zhang, H. Shu, and Y. Yan, “Synthesis of adipic acid catalyzed by surfactant-type peroxotungstates and peroxomolybdates,” Catalysis Communications, vol. 9, no. 4, pp. 551–555, 2008. View at Publisher · View at Google Scholar
  16. A. Sarkar, S. Pramanik, A. Achariya, and P. Pramanik, “A novel sol-gel synthesis of mesoporous ZrO2-MoO3/WO3 mixed oxides,” Microporous and Mesoporous Materials, vol. 115, no. 3, pp. 426–431, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. V. P. Tolstoy, I. V. Chernyshova, and V. A. Skryshevsky, Handbook of Infrared Spectroscopy of Ultrathin Films, John Wiley & Sons, Hoboken, NJ, USA, 2003.
  18. J. Yu, L. Qi, B. Cheng, and X. Zhao, “Effect of calcination temperatures on microstructures and photocatalytic activity of tungsten trioxide hollow microspheres,” Journal of Hazardous Materials, vol. 160, no. 2-3, pp. 621–628, 2008. View at Publisher · View at Google Scholar
  19. S. Wang, C. An, Y. Zhang, Z. Zhang, and Y. Qian, “Ethanothermal reduction to MoO2 microspheres via modified Pechini method,” Journal of Crystal Growth, vol. 293, no. 1, pp. 209–215, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. H. G. El-Shobaky, M. Mokhtar, and A. S. Ahmed, “Effect of MgO-doping on solid-solid interactions in MoO3/Al2O3 system,” Thermochimica Acta, vol. 327, no. 1-2, pp. 39–46, 1999. View at Scopus
  21. W. M. Shaheen, “Thermal solid-solid interaction and catalytic properties of CuO/Al2O3 system treated with ZnO and MoO3,” Thermochimica Acta, vol. 385, no. 1-2, pp. 105–116, 2002. View at Publisher · View at Google Scholar