About this Journal Submit a Manuscript Table of Contents
ISRN Neuroscience
Volume 2013 (2013), Article ID 604847, 24 pages
http://dx.doi.org/10.1155/2013/604847
Review Article

Off the Beaten Path: Drug Addiction and the Pontine Laterodorsal Tegmentum

Department of Drug Design and Pharmacology, Faculty of Health Sciences, Universitetsparken 2, University of Copenhagen, 2100 Copenhagen, Denmark

Received 17 April 2013; Accepted 29 May 2013

Academic Editors: A. Almeida, A. K. Clark, and A. Scuteri

Copyright © 2013 Kristi A. Kohlmeier. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. W. Swanson, “The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat,” Brain Research Bulletin, vol. 9, no. 1–6, pp. 321–353, 1982. View at Scopus
  2. G. M. Halliday and I. Tork, “Electron microscopic analysis of the mesencephalic ventromedial tegmentum in the cat,” Journal of Comparative Neurology, vol. 230, no. 3, pp. 393–412, 1984. View at Scopus
  3. O. T. Phillipson, “A Golgi study of the ventral tegmental area of Tsai and interfascicular nucleus in the rat,” Journal of Comparative Neurology, vol. 187, no. 1, pp. 99–116, 1979. View at Scopus
  4. R. D. Oades and G. M. Halliday, “Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity,” Brain Research, vol. 434, no. 2, pp. 117–165, 1987. View at Scopus
  5. S. Ikemoto and R. A. Wise, “Rewarding effects of the cholinergic agents carbachol and neostigmine in the posterior ventral tegmental area,” Journal of Neuroscience, vol. 22, no. 22, pp. 9895–9904, 2002. View at Scopus
  6. A. Zangen, S. Ikemoto, J. E. Zadina, and R. A. Wise, “Rewarding and psychomotor stimulant effects of endomorphin-1: anteroposterior differences within the ventral tegmental area and lack of effect in nucleus accumbens,” Journal of Neuroscience, vol. 22, no. 16, pp. 7225–7233, 2002. View at Scopus
  7. Z. A. Rodd, R. L. Bell, R. I. Melendez et al., “Comparison of intracranial self-administration of ethanol within the posterior ventral tegmental area between alcohol-preferring and Wistar rats,” Alcoholism, vol. 28, no. 8, pp. 1212–1219, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. A. Rodd, R. I. Melendez, R. L. Bell et al., “Intracranial self-administration of ethanol within the ventral tegmental area of male Wistar rats: evidence for involvement of dopamine neurons,” Journal of Neuroscience, vol. 24, no. 5, pp. 1050–1057, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Ikemoto, J. M. Murphy, and W. J. McBride, “Regional differences within the rat ventral tegmental area for muscimol self-infusions,” Pharmacology Biochemistry and Behavior, vol. 61, no. 1, pp. 87–92, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. V. G. Olson, C. P. Zabetian, C. A. Bolanos et al., “Regulation of drug reward by cAMP response element-binding protein: evidence for two functionally distinct subregions of the ventral tegmental area,” Journal of Neuroscience, vol. 25, no. 23, pp. 5553–5562, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Ikemoto, “Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex,” Brain Research Reviews, vol. 56, no. 1, pp. 27–78, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Zhao-Shea, L. Liu, L. G. Soll et al., “Nicotine-mediated activation of dopaminergic neurons in distinct regions of the ventral tegmental area,” Neuropsychopharmacology, vol. 36, no. 5, pp. 1021–1032, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Matsumoto and O. Hikosaka, “Two types of dopamine neuron distinctly convey positive and negative motivational signals,” Nature, vol. 459, no. 7248, pp. 837–841, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Bourdy and M. Barrot, “A new control center for dopaminergic systems: pulling the VTA by the tail,” Trends in Neurosciences, vol. 35, no. 11, pp. 681–690, 2012.
  15. S. Geisler and D. S. Zahm, “Afferents of the ventral tegmental area in the rat-anatomical substratum for integrative functions,” Journal of Comparative Neurology, vol. 490, no. 3, pp. 270–294, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. W. C. Drevets, C. Gautier, J. C. Price et al., “Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria,” Biological Psychiatry, vol. 49, no. 2, pp. 81–96, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. J. A. Dani, “Roles of dopamine signaling in nicotine addiction,” Molecular Psychiatry, vol. 8, no. 3, pp. 255–256, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. J. R. Hollerman and W. Schultz, “Dopamine neurons report an error in the temporal prediction of reward during learning,” Nature Neuroscience, vol. 1, no. 4, pp. 304–309, 1998. View at Scopus
  19. W. Schultz, “Dopamine neurons and their role in reward mechanisms,” Current Opinion in Neurobiology, vol. 7, no. 2, pp. 191–197, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Schultz, P. Dayan, and P. R. Montague, “A neural substrate of prediction and reward,” Science, vol. 275, no. 5306, pp. 1593–1599, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Schultz, “Predictive reward signal of dopamine neurons,” Journal of Neurophysiology, vol. 80, no. 1, pp. 1–27, 1998. View at Scopus
  22. W. Schultz, “The phasic reward signal of primate dopamine neurons,” Advances in Pharmacology, vol. 42, pp. 686–690, 1998. View at Scopus
  23. D. Saal, Y. Dong, A. Bonci, and R. C. Malenka, “Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons,” Neuron, vol. 37, no. 4, pp. 577–582, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. B. J. Losier and K. Semba, “Dual projections of single cholinergic and aminergic brainstem neurons to the thalamus and basal forebrain in the rat,” Brain Research, vol. 604, no. 1-2, pp. 41–52, 1993. View at Scopus
  25. A. E. Hallanger, A. I. Levey, and H. J. Lee, “The origins of cholinergic and other subcortical afferents to the thalamus in the rat,” Journal of Comparative Neurology, vol. 262, no. 1, pp. 105–124, 1987. View at Scopus
  26. A. I. Levey, B. H. Wainer, E. J. Mufson, and M. M. Mesulam, “Co-localization of acetylcholinesterase and choline acetyltransferase in the rat cerebrum,” Neuroscience, vol. 9, no. 1, pp. 9–22, 1983. View at Publisher · View at Google Scholar · View at Scopus
  27. M. M. Mesulam, E. J. Mufson, A. I. Levey, and B. H. Wainer, “Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey,” Journal of Comparative Neurology, vol. 214, no. 2, pp. 170–197, 1983. View at Scopus
  28. M. M. Mesulam, E. J. Mufson, B. H. Wainer, and A. I. Levey, “Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6),” Neuroscience, vol. 10, no. 4, pp. 1185–1201, 1983. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Pare, Y. Smith, A. Parent, and M. Steriade, “Projections of brainstem core cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei,” Neuroscience, vol. 25, no. 1, pp. 69–86, 1988. View at Scopus
  30. A. Parent, D. Pare, Y. Smith, and M. Steriade, “Basal forebrain cholinergic and noncholinergic projections to the thalamus and brainstem in cats and monkeys,” Journal of Comparative Neurology, vol. 277, no. 2, pp. 281–301, 1988. View at Scopus
  31. M. Steriade, D. Pare, A. Parent, and Y. Smith, “Projections of cholinergic and non-cholinergic neurons of the brainstem core to relay and associational thalamic nuclei in the cat and macaque monkey,” Neuroscience, vol. 25, no. 1, pp. 47–67, 1988. View at Scopus
  32. N. Omelchenko and S. R. Sesack, “Cholinergic axons in the rat ventral tegmental area synapse preferentially onto mesoaccumbens dopamine neurons,” Journal of Comparative Neurology, vol. 494, no. 6, pp. 863–875, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Omelchenico and S. R. Sesack, “Laterodorsal tegmental projections to identified cell populations in the rat ventral tegmental area,” Journal of Comparative Neurology, vol. 483, no. 2, pp. 217–235, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Satoh, D. M. Armstrong, and H. C. Fibiger, “A comparison of the distribution of central cholinergic neurons as demonstrated by acetylcholinesterase pharmacohistochemistry and choline acetyltransferase immunohistochemistry,” Brain Research Bulletin, vol. 11, no. 6, pp. 693–720, 1983. View at Publisher · View at Google Scholar · View at Scopus
  35. J. R. Clements, D. D. Toth, D. A. Highfield, and S. J. Grant, “Glutamate-like immunoreactivity is present within cholinergic neurons of the laterodorsal tegmental and pedunculopontine nuclei,” Advances in Experimental Medicine and Biology, vol. 295, pp. 127–142, 1991. View at Scopus
  36. B. Lavoie and A. Parent, “Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons,” Journal of Comparative Neurology, vol. 344, no. 2, pp. 190–209, 1994. View at Publisher · View at Google Scholar · View at Scopus
  37. H.-G. Jia, J. Yamuy, S. Sampogna, F. R. Morales, and M. H. Chase, “Colocalization of γ-aminobutyric acid and acetylcholine in neurons in the laterodorsal and pedunculopontine tegmental nuclei in the cat: a light and electron microscopic study,” Brain Research, vol. 992, no. 2, pp. 205–219, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. M. El Mansari, K. Sakai, and M. Jouvet, “Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats,” Experimental Brain Research, vol. 76, no. 3, pp. 519–529, 1989. View at Scopus
  39. M. Steriade, S. Datta, D. Paré, G. Oakson, and R. Curró Dossi, “Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems,” Journal of Neuroscience, vol. 10, no. 8, pp. 2541–2559, 1990. View at Scopus
  40. Y. Kayama, M. Ohta, and E. Jodo, “Firing of “possibly” cholinergic neurons in the rat laterodorsal tegmental nucleus during sleep and wakefulness,” Brain Research, vol. 569, no. 2, pp. 210–220, 1992. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Semba and H. C. Fibiger, “Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro- and antero-grade transport and immunohistochemical study,” Journal of Comparative Neurology, vol. 323, no. 3, pp. 387–410, 1992. View at Scopus
  42. B. Ford, C. J. Holmes, L. Mainville, and B. E. Jones, “GABAergic neurons in the rat pontomesencephalic tegmentum: codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus,” Journal of Comparative Neurology, vol. 363, no. 2, pp. 177–196, 1995. View at Publisher · View at Google Scholar · View at Scopus
  43. S. A. Oakman, P. L. Faris, P. E. Kerr, C. Cozzari, and B. K. Hartman, “Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area,” Journal of Neuroscience, vol. 15, no. 9, pp. 5859–5869, 1995. View at Scopus
  44. S. A. Oakman, P. L. Faris, C. Cozzari, and B. K. Hartman, “Characterization of the extent of pontomesencephalic cholinergic neurons' projections to the thalamus: comparison with projections to midbrain dopaminergic groups,” Neuroscience, vol. 94, no. 2, pp. 529–547, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. T. L. Steininger, D. B. Rye, and B. H. Wainer, “Afferent projections to the cholinergic pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the albino rat. I. Retrograde tracing studies,” Journal of Comparative Neurology, vol. 321, no. 4, pp. 515–543, 1992. View at Publisher · View at Google Scholar · View at Scopus
  46. T. L. Steininger, B. H. Wainer, and D. B. Rye, “Ultrastructural study of cholinergic and noncholinergic neurons in the pars compacta of the rat pedunculopontine tegmental nucleus,” Journal of Comparative Neurology, vol. 382, no. 3, pp. 285–301, 1997.
  47. J. Cornwall, J. D. Cooper, and O. T. Phillipson, “Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat,” Brain Research Bulletin, vol. 25, no. 2, pp. 271–284, 1990. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Mena-Segovia, J. P. Bolam, and P. J. Magill, “Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family?” Trends in Neurosciences, vol. 27, no. 10, pp. 585–588, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. P. A. Pahapill and A. M. Lozano, “The pedunculopontine nucleus and Parkinson's disease,” Brain, vol. 123, no. 9, pp. 1767–1783, 2000. View at Scopus
  50. P. Winn, “How best to consider the structure and function of the pedunculopontine tegmental nucleus: evidence from animal studies,” Journal of the Neurological Sciences, vol. 248, no. 1-2, pp. 234–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. H.-L. Wang and M. Morales, “Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat,” European Journal of Neuroscience, vol. 29, no. 2, pp. 340–358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Garzón, R. A. Vaughan, G. R. Uhl, M. J. Kuhar, and V. M. Pickel, “Cholinergic axon terminals in the ventral tegmental area target a subpopulation of neurons expressing low levels of the dopamine transporter,” Journal of Comparative Neurology, vol. 410, no. 2, pp. 197–210, 1999.
  53. J. Cornwall and O. T. Phillipson, “Single neurones of the basal forebrain and laterodorsal tegmental nucleus project by collateral axons to the olfactory bulb and the mediodorsal nucleus in the rat,” Brain Research, vol. 491, no. 1, pp. 194–198, 1989. View at Scopus
  54. A. Jourdain, K. Semba, and H. C. Fibiger, “Basal forebrain and mesopontine tegmental projections to the reticular thalamic nucleus: an axonal collateralization and immunohistochemical study in the rat,” Brain Research, vol. 505, no. 1, pp. 55–65, 1989. View at Publisher · View at Google Scholar · View at Scopus
  55. R. F. Bolton, J. Cornwall, and O. T. Phillipson, “Collateral axons of cholinergic pontine neurones projecting to midline, mediodorsal and parafascicular thalamic nuclei in the rat,” Journal of Chemical Neuroanatomy, vol. 6, no. 2, pp. 101–114, 1993. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Billet, N. B. Cant, and W. C. Hall, “Cholinergic projections to the visual thalamus and superior colliculus,” Brain Research, vol. 847, no. 1, pp. 121–123, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Semba, P. B. Reiner, and H. C. Fibiger, “Single cholinergic mesopontine tegmental neurons project to both the pontine reticular formation and the thalamus in the rat,” Neuroscience, vol. 38, no. 3, pp. 643–654, 1990. View at Publisher · View at Google Scholar · View at Scopus
  58. E. C. Holmstrand, J. Asafu-Adjei, A. R. Sampson, R. D. Blakely, and S. R. Sesack, “Ultrastructural localization of high-affinity choline transporter in the rat anteroventral thalamus and ventral tegmental area: differences in axon morphology and transporter distribution,” Journal of Comparative Neurology, vol. 518, no. 11, pp. 1908–1924, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. E. C. Holmstrand and S. R. Sesack, “Projections from the rat pedunculopontine and laterodorsal tegmental nuclei to the anterior thalamus and ventral tegmental area arise from largely separate populations of neurons,” Brain Structure and Function, vol. 216, no. 4, pp. 331–345, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Steriade, D. Paré, S. Datta, G. Oakson, and R. Curró Dossi, “Different cellular types in mesopontine cholinergic nuclei related to ponto-geniculo-occipital waves,” Journal of Neuroscience, vol. 10, no. 8, pp. 2560–2579, 1990. View at Scopus
  61. T. Hokfelt, “Neuropeptides in perspective: the last ten years,” Neuron, vol. 7, no. 6, pp. 867–879, 1991. View at Publisher · View at Google Scholar · View at Scopus
  62. F. S. Vilim, E. C. Cropper, D. A. Price, I. Kupfermann, and K. R. Weiss, “Release of peptide cotransmitters in Aplysia: regulation and functional implications,” Journal of Neuroscience, vol. 16, no. 24, pp. 8105–8114, 1996. View at Scopus
  63. S. R. Vincent, K. Satoh, D. M. Armstrong, and H. C. Fibiger, “Substance P in the ascending cholinergic reticular system,” Nature, vol. 306, no. 5944, pp. 688–691, 1983. View at Scopus
  64. G. L. Forster and C. D. Blaha, “Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area,” European Journal of Neuroscience, vol. 12, no. 10, pp. 3596–3604, 2000. View at Publisher · View at Google Scholar · View at Scopus
  65. G. L. Forster, A. J. Falcon, A. D. Miller, G. A. Heruc, and C. D. Blaha, “Effects of laterodorsal tegmentum excitotoxic lesions on behavioral and dopamine responses evoked by morphine and d-amphetamine,” Neuroscience, vol. 114, no. 4, pp. 817–823, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. G. L. Forster, J. S. Yeomans, J. Takeuchi, and C. D. Blaha, “M5 muscarinic receptors are required for prolonged accumbal dopamine release after electrical stimulation of the pons in mice,” The Journal of Neuroscience, vol. 22, no. 1, p. RC190, 2002. View at Scopus
  67. J. Yeomans, G. Forster, and C. Blaha, “M5 muscarinic receptors are needed for slow activation of dopamine neurons and for rewarding brain stimulation,” Life Sciences, vol. 68, no. 22-23, pp. 2449–2456, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. M. T. Vilaro, J. M. Palacios, and G. Mengod, “Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry,” Neuroscience Letters, vol. 114, no. 2, pp. 154–159, 1990. View at Publisher · View at Google Scholar · View at Scopus
  69. D. M. Weiner, A. I. Levey, and M. R. Brann, “Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 18, pp. 7050–7054, 1990. View at Scopus
  70. D. B. Lester, A. D. Miller, and C. D. Blaha, “Muscarinic receptor blockade in the ventral tegmental area attenuates cocaine enhancement of laterodorsal tegmentum stimulation-evoked accumbens dopamine efflux in the mouse,” Synapse, vol. 64, no. 3, pp. 216–223, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. C. D. Blaha, L. F. Allen, S. Das et al., “Modulation of dopamine efflux in the nucleus accumbens after cholinergic stimulation of the ventral tegmental area in intact, pedunculopontine tegmental nucleus-lesioned, and laterodorsal tegmental nucleus-lesioned rats,” Journal of Neuroscience, vol. 16, no. 2, pp. 714–722, 1996. View at Scopus
  72. C. L. Nelson, J. B. Wetter, M. Milovanovic, and M. E. Wolf, “The laterodorsal tegmentum contributes to behavioral sensitization to amphetamine,” Neuroscience, vol. 146, no. 1, pp. 41–49, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Lammel, B. K. Lim, C. Ran et al., “Input-specific control of reward and aversion in the ventral tegmental area,” Nature, vol. 491, no. 7423, pp. 212–217, 2012.
  74. S. D. Clark, H.-P. Nothacker, C. D. Blaha et al., “Urotensin II acts as a modulator of mesopontine cholinergic neurons,” Brain Research, vol. 1059, no. 2, pp. 139–148, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. S. B. Floresco, A. R. West, B. Ash, H. Moorel, and A. A. Grace, “Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission,” Nature Neuroscience, vol. 6, no. 9, pp. 968–973, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. A. A. Grace and B. S. Bunney, “Intracellular and extracellular electrophysiology of nigral dopaminergic neurons. 2. Action potential generating mechanisms and morphologic correlates,” Neuroscience, vol. 10, no. 2, pp. 317–331, 1983. View at Publisher · View at Google Scholar · View at Scopus
  77. A. A. Grace and B. S. Bunney, “Intracellular and extracellular electrophysiology of nigral dopaminergic neurons. 1. Identification and characterization,” Neuroscience, vol. 10, no. 2, pp. 301–315, 1983. View at Publisher · View at Google Scholar · View at Scopus
  78. A. A. Grace and S.-P. Onn, “Morphology and electrophysiological properties of immunocytochemistry identified rat dopamine neurons recorded in vitro,” Journal of Neuroscience, vol. 9, no. 10, pp. 3463–3481, 1989. View at Scopus
  79. S. T. Kitai, “Afferent control of substantia nigra compacta dopamine neurons: anatomical perspective and role of glutamatergic and cholinergic inputs,” Advances in Pharmacology, vol. 42, pp. 700–702, 1998. View at Scopus
  80. S. T. Kitai, P. D. Shepard, J. C. Callaway, and R. Scroggs, “Afferent modulation of dopamine neuron firing patterns,” Current Opinion in Neurobiology, vol. 9, no. 6, pp. 690–697, 1999. View at Publisher · View at Google Scholar · View at Scopus
  81. A. A. Grace, “Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia,” Neuroscience, vol. 41, no. 1, pp. 1–24, 1991. View at Publisher · View at Google Scholar · View at Scopus
  82. K. C. Berridge and T. E. Robinson, “What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?” Brain Research Reviews, vol. 28, no. 3, pp. 309–369, 1998. View at Publisher · View at Google Scholar · View at Scopus
  83. H.-C. Tsai, F. Zhang, A. Adamantidis et al., “Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning,” Science, vol. 324, no. 5930, pp. 1080–1084, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. K. Chergui, M. F. Suaud-Chagny, and F. Gonon, “Nonlinear relationship between impulse flow, dopamine release and dopamine elimination in the rat brain in vivo,” Neuroscience, vol. 62, no. 3, pp. 641–645, 1994. View at Publisher · View at Google Scholar · View at Scopus
  85. A. A. Grace and B. S. Bunney, “The control of firing pattern in nigral dopamine neurons: burst firing,” Journal of Neuroscience, vol. 4, no. 11, pp. 2877–2890, 1984. View at Scopus
  86. M. F. Suaud-Chagny, K. Chergui, G. Chouvet, and F. Gonon, “Relationship between dopamine release in the rat nucleus accumbens and the discharge activity of dopaminergic neurons during local in vivo application of amino acids in the ventral tegmental area,” Neuroscience, vol. 49, no. 1, pp. 63–72, 1992. View at Publisher · View at Google Scholar · View at Scopus
  87. D. J. Lodge and A. A. Grace, “The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 13, pp. 5167–5172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Mameli-Engvall, A. Evrard, S. Pons et al., “Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors,” Neuron, vol. 50, no. 6, pp. 911–921, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. U. Maskos, B. E. Molles, S. Pons et al., “Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors,” Nature, vol. 436, no. 7047, pp. 103–107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. N. Kayadjanian, H. Gioanni, A. Ménetrey, and M. J. Besson, “Muscarinic receptor stimulation increases the spontaneous [3H]GABA release in the rat substantia nigra through muscarinic receptors localized on striatonigral terminals,” Neuroscience, vol. 63, no. 4, pp. 989–1002, 1994. View at Publisher · View at Google Scholar · View at Scopus
  91. C. A. Paladini, P. Celada, and J. M. Tepper, “Striatal, pallidal, and pars reticulata evoked inhibition of nigrostriatal dopaminergic neurons is mediated by GABA(A), receptors in vivo,” Neuroscience, vol. 89, no. 3, pp. 799–812, 1999. View at Publisher · View at Google Scholar · View at Scopus
  92. H. D. Mansvelder, J. R. Keath, and D. S. McGehee, “Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas,” Neuron, vol. 33, no. 6, pp. 905–919, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. H. D. Mansvelder and D. S. McGehee, “Long-term potentiation of excitatory inputs to brain reward areas by nicotine,” Neuron, vol. 27, no. 2, pp. 349–357, 2000. View at Scopus
  94. P.-J. Corringer, S. Bertrand, S. Bohler, S. J. Edelstein, J.-P. Changeux, and D. Bertrand, “Critical elements determining diversity in agonist binding and desensitization of neuronal nicotinic acetylcholine receptors,” Journal of Neuroscience, vol. 18, no. 2, pp. 648–657, 1998. View at Scopus
  95. C. P. Fenster, M. F. Rains, B. Noerager, M. W. Quick, and R. A. J. Lester, “Influence of subunit composition on desensitization of neuronal acetylcholine receptors at low concentrations of nicotine,” Journal of Neuroscience, vol. 17, no. 15, pp. 5747–5759, 1997. View at Scopus
  96. S. Tolu, R. Eddine, F. Marti, et al., “Co-activation of VTA DA and GABA neurons mediates nicotine reinforcement,” Molecular Psychiatry, vol. 18, no. 3, pp. 382–393, 2013.
  97. B. E. Jones and T.-Z. Yang, “The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat,” Journal of Comparative Neurology, vol. 242, no. 1, pp. 56–92, 1985. View at Scopus
  98. K. J. Maloney, L. Mainville, and B. E. Jones, “Differential c-Fos expression in cholinergic, monoaminergic, and GABAergic cell groups of the pontomesencephalic tegmentum after paradoxical sleep deprivation and recovery,” Journal of Neuroscience, vol. 19, no. 8, pp. 3057–3072, 1999. View at Scopus
  99. S. Boucetta and B. E. Jones, “Activity profiles of cholinergic and intermingled gabaergic and putative glutamatergic neurons in the pontomesencephalic tegmentum of urethane-anesthetized rats,” Journal of Neuroscience, vol. 29, no. 14, pp. 4664–4674, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. K. Sakai, “Discharge properties of presumed cholinergic and noncholinergic laterodorsal tegmental neurons related to cortical activation in non-anesthetized mice,” Neuroscience, vol. 224, pp. 172–190, 2012.
  101. K. Satoh and H. C. Fibiger, “Cholinergic neurons of the laterodorsal tegmental nucleus: efferent and afferent connections,” Journal of Comparative Neurology, vol. 253, no. 3, pp. 277–302, 1986. View at Scopus
  102. S. E. Young, R. P. Corley, M. C. Stallings, S. H. Rhee, T. J. Crowley, and J. K. Hewitt, “Substance use, abuse and dependence in adolescence: prevalence, symptom profiles and correlates,” Drug and Alcohol Dependence, vol. 68, no. 3, pp. 309–322, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. J. R. DiFranza, N. A. Rigotti, A. D. McNeill et al., “Initial symptoms of nicotine dependence in adolescents,” Tobacco Control, vol. 9, no. 3, pp. 313–319, 2000. View at Scopus
  104. M. H. Christensen, M. Ishibashi, and K. A. Kohlmeier, “Is nicotine more exciting in cholinergic and non-cholinergic neurones in the Laterodorsal Tegmental Nucleus in young compared to adult mice?” University of Copenhagen, Research Day, 2012.
  105. S. R. Laviolette, R. P. M. Priebe, and J. S. Yeomans, “Role of the laterodorsal tegmental nucleus in scopolamine- and amphetamine-induced locomotion and stereotypy,” Pharmacology Biochemistry and Behavior, vol. 65, no. 1, pp. 163–174, 2000. View at Publisher · View at Google Scholar · View at Scopus
  106. H. L. Alderson, M. P. Latimer, and P. Winn, “Involvement of the laterodorsal tegmental nucleus in the locomotor response to repeated nicotine administration,” Neuroscience Letters, vol. 380, no. 3, pp. 335–339, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. H. D. Schmidt, K. R. Famous, and R. C. Pierce, “The limbic circuitry underlying cocaine seeking encompasses the PPTg/LDT,” European Journal of Neuroscience, vol. 30, no. 7, pp. 1358–1369, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. M. E. Wolf, “Addiction: making the connection between behavioral changes and neuronal plasticity in specific pathways,” Molecular Interventions, vol. 2, no. 3, pp. 146–157, 2002. View at Scopus
  109. L. K. Dobbs and G. P. Mark, “Acetylcholine from the mesopontine tegmental nuclei differentially affects methamphetamine induced locomotor activity and neurotransmitter levels in the mesolimbic pathway,” Behavioural Brain Research, vol. 226, no. 1, pp. 224–234, 2012. View at Publisher · View at Google Scholar · View at Scopus
  110. A. José Lança, T. R. Sanelli, and W. A. Corrigall, “Nicotine-induced Fos expression in the pedunculopontine mesencephalic tegmentum in the rat,” Neuropharmacology, vol. 39, no. 13, pp. 2808–2817, 2000. View at Publisher · View at Google Scholar · View at Scopus
  111. L. Azam, U. Winzer-Serhan, and F. M. Leslie, “Co-expression of α7 and β2 nicotinic acetylcholine receptor subunit mRNAs within rat brain cholinergic neurons,” Neuroscience, vol. 119, no. 4, pp. 965–977, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. M. Ishibashi, C. S. Leonard, and K. A. Kohlmeier, “Nicotinic activation of laterodorsal tegmental neurons: implications for addiction to nicotine,” Neuropsychopharmacology, vol. 34, no. 12, pp. 2529–2547, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. M. E. Nelson, A. Kuryatov, C. H. Choi, Y. Zhou, and J. Lindstrom, “Alternate stoichiometries of alpha4beta2 nicotinic acetylcholine receptors,” Molecular Pharmacology, vol. 63, no. 2, pp. 332–341, 2003.
  114. G. J. Lammers, C. Bassetti, M. Billiard, et al., “Sodium oxybate is an effective and safe treatment for narcolepsy,” Sleep Medicine, vol. 11, no. 1, pp. 105–106, 2010.
  115. H. Andresen, B. E. Aydin, A. Mueller, and S. Iwersen-Bergmann, “An overview of gamma-hydroxybutyric acid: pharmacodynamics, pharmacokinetics, toxic effects, addiction, analytical methods, and interpretation of results,” Drug Testing and Analysis, vol. 3, no. 9, pp. 560–568, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. M. K. S. Shbair, S. Eljabour, and M. Lhermitte, “Drugs involved in drug-facilitated crimes: part I: alcohol, sedative-hypnotic drugs, gamma-hydroxybutyrate and ketamine. A review,” Annales Pharmaceutiques Francaises, vol. 68, no. 5, pp. 275–285, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. M. A. M. Carai, C. Lobina, P. Maccioni, C. Cabras, G. Colombo, and G. L. Gessa, “γ-Aminobutyric acidB (GABAB)-receptor mediation of different in vivo effects of γ-butyrolactone,” Journal of Pharmacological Sciences, vol. 106, no. 2, pp. 199–207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. K. Jensen and I. Mody, “GHP depresses fast excitatory and inhibitory synaptic transmission via GABAb receptors in mouse neocortical neurons,” Cerebral Cortex, vol. 11, no. 5, pp. 424–429, 2001. View at Scopus
  119. C. Quéva, M. Bremner-Danielsen, A. Edlund et al., “Effects of GABA agonists on body temperature regulation in GABAB(1)-/- mice,” British Journal of Pharmacology, vol. 140, no. 2, pp. 315–322, 2003. View at Publisher · View at Google Scholar · View at Scopus
  120. P. C. Waldmeier, “The GABA(B) antagonist, CGP 35348, antagonizes the effects of baclofen, γ-butyrolactone and HA 966 on rat striatal dopamine synthesis,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 343, no. 2, pp. 173–178, 1991. View at Scopus
  121. K. A. Kohlmeier and U. Kristiansen, “GABAergic actions on cholinergic laterodorsal tegmental neurons: implications for control of behavioral state,” Neuroscience, vol. 171, no. 3, pp. 812–829, 2010. View at Publisher · View at Google Scholar · View at Scopus
  122. K. A. Kohlmeier, B. Vardar, and M. H. Christensen, “γ-Hydroxybutyric acid (GHB) induces actions via the GABAB receptor in arousal and motor control-related nuclei: implications for therapeutic actions in behavioral state disorders,” Neuroscience. In press.
  123. H. G. Cruz, T. Ivanova, M.-L. Lunn, M. Stoffel, P. A. Slesinger, and C. Lüscher, “Bi-directional effects of GABAB receptor agonists on the mesolimbic dopamine system,” Nature Neuroscience, vol. 7, no. 2, pp. 153–159, 2004. View at Publisher · View at Google Scholar · View at Scopus
  124. V. Santhakumar, M. Wallner, and T. S. Otis, “Ethanol acts directly on extrasynaptic subtypes of GABAA receptors to increase tonic inhibition,” Alcohol, vol. 41, no. 3, pp. 211–221, 2007. View at Publisher · View at Google Scholar · View at Scopus
  125. T. Okamoto, M. T. Harnett, and H. Morikawa, “Hyperpolarization-activated cation current (Ih) is an ethanol target in midbrain dopamine neurons of mice,” Journal of Neurophysiology, vol. 95, no. 2, pp. 619–626, 2006. View at Publisher · View at Google Scholar · View at Scopus
  126. M. P. Kristensen, C. J. Tyler, S. Burlet, K. A. Kohmeier, and C. S. Leonard, “Comparative electrophysiological and cholinoceptive characteristics of laterodorsal tegmental neurons from the developing mouse,” In press.
  127. J. McDaid and D. S. McGehee, “Ethanol inhibits alpha-7 nicotinic receptors in the laterodorsal tegmentum via a PKA dependent pathway,” in Proceedings of the Society for Neuroscience Annual Meeting, Program 227.23, Society for Neuroscience, Chicago, Ill, USA, 2009.
  128. K. S. Wilcox, S. J. Grant, B. A. Burkhart, and G. R. Christoph, “In vitro electrophysiology of neurons in the lateral dorsal tegmental nucleus,” Brain Research Bulletin, vol. 22, no. 3, pp. 557–560, 1989. View at Scopus
  129. A. Kamondi, J. A. Williams, B. Hutcheon, and P. B. Reiner, “Membrane properties of mesopontine cholinergic neurons studied with the whole-cell patch-clamp technique: implications for behavioral state control,” Journal of Neurophysiology, vol. 68, no. 4, pp. 1359–1372, 1992. View at Scopus
  130. J. I. Luebke, R. W. Greene, K. Semba, A. Kamondi, R. W. McCarley, and P. B. Reiner, “Serotonin hyperpolarizes cholinergic low-threshold burst neurons in the rat laterodorsal tegmental nucleus in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 2, pp. 743–747, 1992. View at Scopus
  131. C. S. Leonard and R. Llinás, “Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling rem sleep: an in vitro electrophysiological study,” Neuroscience, vol. 59, no. 2, pp. 309–330, 1994. View at Publisher · View at Google Scholar · View at Scopus
  132. C. S. Leonard and R. Llinas, “Electrophysiology of mammalian pedunculopontine and laterodorsal tegmental neurons in vitro: implications for the control of REM sleep,” in Brain Cholinergic Systems, M. Steriade and D. Biesold, Eds., pp. 205–223, Oxford University Press, New York, NY, USA, 1990.
  133. J.-L. Bossu and A. Feltz, “Inactivation of the low-threshold transient calcium current in rat sensory neurones: evidence for a dual process,” Journal of Physiology, vol. 376, pp. 341–357, 1986. View at Scopus
  134. J.-L. Dupont, J.-L. Bossu, and A. Feltz, “Effect of internal calcium concentration on calcium currents in rat sensory neurones,” Pflugers Archiv, vol. 406, no. 4, pp. 433–435, 1986. View at Scopus
  135. D. A. Coulter, J. R. Huguenard, and D. A. Prince, “Calcium currents in rat thalamocortical relay neurones: kinetic properties of the transient, low-threshold current,” Journal of Physiology, vol. 414, pp. 587–604, 1989. View at Scopus
  136. Y. Kang and S. T. Kitai, “Electrophysiological properties of pedunculopontine neurons and their postsynaptic responses following stimulation of substantia nigra reticulata,” Brain Research, vol. 535, no. 1, pp. 79–95, 1990. View at Publisher · View at Google Scholar · View at Scopus
  137. C. P. Blomeley, S. Cains, R. Smith, and E. Bracci, “Ethanol affects striatal interneurons directly and projection neurons through a reduction in cholinergic tone,” Neuropsychopharmacology, vol. 36, no. 5, pp. 1033–1046, 2011. View at Publisher · View at Google Scholar · View at Scopus
  138. C. H. Good, K. D. Bay, R. A. Buchanan, K. A. McKeon, R. D. Skinner, and E. Garcia-Rill, “Prenatal exposure to cigarette smoke affects the physiology of pedunculopontine nucleus (PPN) neurons in development,” Neurotoxicology and Teratology, vol. 28, no. 2, pp. 210–219, 2006. View at Publisher · View at Google Scholar · View at Scopus
  139. E. Y. Hong and H. S. Lee, “Retrograde study of projections from the tuberomammillary nucleus to the mesopontine cholinergic complex in the rat,” Brain Research, vol. 1383, pp. 169–178, 2011. View at Publisher · View at Google Scholar · View at Scopus
  140. C. Peyron, D. K. Tighe, A. N. Van Den Pol et al., “Neurons containing hypocretin (orexin) project to multiple neuronal systems,” Journal of Neuroscience, vol. 18, no. 23, pp. 9996–10015, 1998. View at Scopus
  141. S. Mihailescu, R. Guzmán-Marín, and R. Drucker-Colín, “Nicotine stimulation of dorsal raphe neurons: effects on laterodorsal and pedunculopontine neurons,” European Neuropsychopharmacology, vol. 11, no. 5, pp. 359–366, 2001. View at Publisher · View at Google Scholar · View at Scopus
  142. S. R. Vincent, K. Satoh, D. M. Armstrong, and H. C. Fibiger, “NADPH-diaphorase: a selective histochemical marker for the cholinergic neurons of the pontine reticular formation,” Neuroscience Letters, vol. 43, no. 1, pp. 31–36, 1983. View at Publisher · View at Google Scholar · View at Scopus
  143. J. A. Williams and P. B. Reiner, “Noradrenaline hyperpolarizes identified rat mesopontine cholinergic neurons in vitro,” Journal of Neuroscience, vol. 13, no. 9, pp. 3878–3883, 1993. View at Scopus
  144. Y. P. Hou, I. D. Manns, and B. E. Jones, “Immunostaining of cholinergic pontomesencephalic neurons for α1 versus α2 adrenergic receptors suggests different sleep-wake state activities and roles,” Neuroscience, vol. 114, no. 3, pp. 517–521, 2002. View at Publisher · View at Google Scholar · View at Scopus
  145. P. Fort, A. Khateb, A. Pegna, M. Muhlethaler, and B. E. Jones, “Noradrenergic modulation of cholinergic nucleus basalis neurons demonstrated by in vitro pharmacological and immunohistochemical evidence in the guinea-pig brain,” European Journal of Neuroscience, vol. 7, no. 7, pp. 1502–1511, 1995. View at Publisher · View at Google Scholar · View at Scopus
  146. D. G. Rainnie, H. C. Grunze, R. W. McCarley, and R. W. Greene, “Adenosine inhibition of mesopontine cholinergic neurons: implications for EEG arousal,” Science, vol. 263, no. 5147, pp. 689–692, 1994.
  147. D. Brambilla, I. Barajon, S. Bianchi, M. R. Opp, and L. Imeri, “Interleukin-1 inhibits putative cholinergic neurons in vitro and REM sleep when microinjected into the rat laterodorsal tegmental nucleus,” Sleep, vol. 33, no. 7, pp. 919–929, 2010. View at Scopus
  148. K. A. Kohlmeier, M. H. Christensen, M. P. Kristensen, and U. Kristiansen, “Pharmacological evidence of functional inhibitory metabotrophic glutamate receptors on mouse arousal-related cholinergic laterodorsal tegmental neurons,” Neuropharmacology, vol. 66, pp. 99–113, 2013. View at Publisher · View at Google Scholar · View at Scopus
  149. Y. Koyama and K. Sakai, “Modulation of presumed cholinergic mesopontine tegmental neurons by acetylcholine and monoamines applied iontophoretically in unanesthetized cats,” Neuroscience, vol. 96, no. 4, pp. 723–733, 2000. View at Publisher · View at Google Scholar · View at Scopus
  150. J. M. Monti and D. Monti, “The involvement of dopamine in the modulation of sleep and waking,” Sleep Medicine Reviews, vol. 11, no. 2, pp. 113–133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  151. W. L. Inglis and K. Semba, “Discriminable excitotoxic effects of ibotenic acid, AMPA, NMDA and quinolinic acid in the rat laterodorsal tegmental nucleus,” Brain Research, vol. 755, no. 1, pp. 17–27, 1997. View at Publisher · View at Google Scholar · View at Scopus
  152. R. Sanchez and C. S. Leonard, “NMDA-receptor-mediated synaptic currents in guinea pig laterodorsal tegmental neurons in vitro,” Journal of Neurophysiology, vol. 76, no. 2, pp. 1101–1111, 1996. View at Scopus
  153. R. Sanchez and C. S. Leonard, “NMDA receptor-mediated synaptic input to nitric oxide synthase-containing neurons of the guinea pig mesopontine tegmentum in vitro,” Neuroscience Letters, vol. 179, no. 1-2, pp. 141–144, 1994. View at Publisher · View at Google Scholar · View at Scopus
  154. K. A. Kohlmeier and C. S. Leonard, “Transmitter modulation of spike-evoked calcium transients in arousal related neurons: muscarinic inhibition of SNX-482-sensitive calcium influx,” European Journal of Neuroscience, vol. 23, no. 5, pp. 1151–1162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  155. A. Khateb, M. Serafin, and M. Mühlethaler, “Histamine excites pedunculopontine neurones in guinea pig brainstem slices,” Neuroscience Letters, vol. 112, no. 2-3, pp. 257–262, 1990. View at Publisher · View at Google Scholar · View at Scopus
  156. K. A. Kohlmeier and P. B. Reiner, “Noradrenaline excites non-cholinergic laterodorsal tegmental neurons via two distinct mechanisms,” Neuroscience, vol. 93, no. 2, pp. 619–630, 1999. View at Publisher · View at Google Scholar · View at Scopus
  157. S. Takano, J. Kim, Y. Ikari et al., “Electrophysiological effects of ghrelin on laterodorsal tegmental neurons in rats: an in vitro study,” Peptides, vol. 30, no. 10, pp. 1901–1908, 2009. View at Publisher · View at Google Scholar · View at Scopus
  158. E. Jerlhag, A. C. Janson, S. Waters, and J. A. Engel, “Concomitant release of ventral tegmental acetylcholine and accumbal dopamine by ghrelin in rats,” PLoS ONE, vol. 7, no. 11, Article ID e49557, 2012.
  159. S. Burlet, C. J. Tyler, and C. S. Leonard, “Direct and indirect excitation of laterodorsal tegmental neurons by Hypocretin/Orexin peptides: implications for wakefulness and narcolepsy,” Journal of Neuroscience, vol. 22, no. 7, pp. 2862–2872, 2002. View at Scopus
  160. K. Takahashi, Y. Koyama, Y. Kayama, and M. Yamamoto, “Effects of orexin on the laterodorsal tegmental neurones,” Psychiatry and Clinical Neurosciences, vol. 56, no. 3, pp. 335–336, 2002. View at Publisher · View at Google Scholar · View at Scopus
  161. R. Bernard, R. Lydic, and H. A. Baghdoyan, “Hypocretin-1 causes G protein activation and increases ACh release in rat pons,” European Journal of Neuroscience, vol. 18, no. 7, pp. 1775–1785, 2003. View at Publisher · View at Google Scholar · View at Scopus
  162. E. D. Cid-Pellitero and M. Garzón, “Hypocretin1/OrexinA Axon targeting of laterodorsal tegmental nucleus neurons projecting to the rat medial prefrontal cortex,” Cerebral Cortex, vol. 21, no. 12, pp. 2762–2773, 2011. View at Publisher · View at Google Scholar · View at Scopus
  163. J. I. Luebke, R. W. McCarley, and R. W. Greene, “Inhibitory action of muscarinic agonists on neurons in the rat laterodorsal tegmental nucleus in vitro,” Journal of Neurophysiology, vol. 70, no. 5, pp. 2128–2135, 1993. View at Scopus
  164. K. A. Kohlmeier, M. Ishibashi, J. Wess, M. E. Bickford, and C. S. Leonard, “Knockouts reveal overlapping functions of M(2) and M(4) muscarinic receptors and evidence for a local glutamatergic circuit within the laterodorsal tegmental nucleus,” Journal of Neurophysiology, vol. 108, no. 10, pp. 2751–2766, 2012.
  165. L. S. Schmidt, M. Thomsen, P. Weikop et al., “Increased cocaine self-administration in M4 muscarinic acetylcholine receptor knockout mice,” Psychopharmacology, vol. 216, no. 3, pp. 367–378, 2011. View at Publisher · View at Google Scholar · View at Scopus
  166. T. Honda and K. Semba, “An ultrastructural study of cholinergic end non-cholinergic neurons in the laterodorsal and pedunculopontine tegmental nuclei in the rat,” Neuroscience, vol. 68, no. 3, pp. 837–853, 1995. View at Publisher · View at Google Scholar · View at Scopus
  167. J. A. Kauer and R. C. Malenka, “Synaptic plasticity and addiction,” Nature Reviews Neuroscience, vol. 8, no. 11, pp. 844–858, 2007. View at Publisher · View at Google Scholar · View at Scopus
  168. M. A. Ungless, J. L. Whistler, R. C. Malenka, and A. Bonci, “Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons,” Nature, vol. 411, no. 6837, pp. 583–587, 2001. View at Publisher · View at Google Scholar · View at Scopus
  169. K. Kaneda, R. Kurosawa, and M. Minami, “Cocaine-induced plasticity in cholinergic neurons of the laterodorsal tegmental nucleus,” in Proceedings of the Society for Neuroscience Annual Meeting, Society for Neuroscience, New Orleans, La, USA, 2012.
  170. A. Bonci and R. C. Malenka, “Properties and plasticity of excitatory synapses on dopaminergic and GABAergic cells in the ventral tegmental area,” Journal of Neuroscience, vol. 19, no. 10, pp. 3723–3730, 1999. View at Scopus
  171. S. L. Borgland, S. A. Taha, F. Sarti, H. L. Fields, and A. Bonci, “Orexin a in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine,” Neuron, vol. 49, no. 4, pp. 589–601, 2006. View at Publisher · View at Google Scholar · View at Scopus
  172. G. C. Harris, M. Wimmer, and G. Aston-Jones, “A role for lateral hypothalamic orexin neurons in reward seeking,” Nature, vol. 437, no. 7058, pp. 556–559, 2005. View at Publisher · View at Google Scholar · View at Scopus
  173. K. A. Kohlmeier, T. Inoue, and C. S. Leonard, “Hypocretin/orexin peptide signaling in the ascending arousal system: elevation of intracellular calcium in the mouse dorsal raphe and laterodorsal tegmentum,” Journal of Neurophysiology, vol. 92, no. 1, pp. 221–235, 2004. View at Publisher · View at Google Scholar · View at Scopus
  174. D. B. Lester, A. D. Miller, T. D. Pate, and C. D. Blaha, “Midbrain acetylcholine and glutamate receptors modulate accumbal dopamine release,” NeuroReport, vol. 19, no. 9, pp. 991–995, 2008. View at Publisher · View at Google Scholar · View at Scopus
  175. P. V. Rada, G. P. Mark, J. J. Yeomans, and B. G. Hoebel, “Acetylcholine release in ventral tegmental area by hypothalamic self-stimulation, eating, and drinking,” Pharmacology Biochemistry and Behavior, vol. 65, no. 3, pp. 375–379, 2000. View at Publisher · View at Google Scholar · View at Scopus
  176. J. S. Yeomans, “Role of tegmental cholinergic neurons in dopaminergic activation, antimuscarinic psychosis and schizophrenia,” Neuropsychopharmacology, vol. 12, no. 1, pp. 3–16, 1995. View at Publisher · View at Google Scholar · View at Scopus
  177. J. S. Yeomans, C. M. E. Hempel, and C. A. Chapman, “Axons and synapses mediating startle-like responses evoked by electrical stimulation of the reticular formation in rats: symmetric and asymmetric collision effects,” Brain Research, vol. 617, no. 2, pp. 309–319, 1993. View at Publisher · View at Google Scholar · View at Scopus
  178. J. S. Yeomans, A. Mathur, and M. Tampakeras, “Rewarding brain stimulation: role of tegmental cholinergic neurons that activate dopamine neurons,” Behavioral Neuroscience, vol. 107, no. 6, pp. 1077–1087, 1993. View at Publisher · View at Google Scholar · View at Scopus
  179. D. Nakahara, Y. Ishida, M. Nakamura, N. Furuno, and T. Nishimori, “Intracranial self-stimulation induces Fos expression in GABAergic neurons in the rat mesopontine tegmentum,” Neuroscience, vol. 106, no. 3, pp. 633–641, 2001. View at Publisher · View at Google Scholar · View at Scopus
  180. A. J. Lança, K. L. Adamson, K. M. Coen, B. L. C. Chow, and W. A. Corrigall, “The pedunculopontine tegmental nucleus and the role of cholinergic neurons in nicotine self-administration in the rat: a correlative neuroanatomical and behavioral study,” Neuroscience, vol. 96, no. 4, pp. 735–742, 2000. View at Publisher · View at Google Scholar · View at Scopus
  181. Z. Y. Tong, P. G. Overton, and D. Clark, “Stimulation of the prefrontal cortex in the rat induces patterns of activity in midbrain dopaminergic neurons which resemble natural burst events,” Synapse, vol. 22, no. 3, pp. 195–208, 1996.
  182. S. Murase, J. Grenhoff, G. Chouvet, F. G. Gonon, and T. H. Svensson, “Prefrontal cortex regulates burst firing and transmitter release in rat mesolimbic dopamine neurons studied in vivo,” Neuroscience Letters, vol. 157, no. 1, pp. 53–56, 1993. View at Publisher · View at Google Scholar · View at Scopus
  183. M. T. Taber and H. C. Fibiger, “Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat: modulation by metabotropic glutamate receptors,” Journal of Neuroscience, vol. 15, no. 5, pp. 3896–3904, 1995. View at Scopus
  184. M. Karreman and B. Moghaddam, “The prefrontal cortex regulates the basal release of dopamine in the limbic striatum: an effect mediated by ventral tegmental area,” Journal of Neurochemistry, vol. 66, no. 2, pp. 589–598, 1996. View at Scopus
  185. Z.-B. You, “Electrical stimulation of the prefrontal cortex increases cholecystokinin, glutamate, and dopamine release in the nucleus accumbens: an in vivo microdialysis study in freely moving rats,” Journal of Neuroscience, vol. 18, no. 16, pp. 6492–6500, 1998. View at Scopus
  186. M. E. Jackson, A. S. Frost, and B. Moghaddam, “Stimulation of prefrontal cortex at physiologically relevant frequencies inhibits dopamine release in the nucleus accumbens,” Journal of Neurochemistry, vol. 78, no. 4, pp. 920–923, 2001. View at Publisher · View at Google Scholar · View at Scopus
  187. D. B. Carr and S. R. Sesack, “Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons,” Journal of Neuroscience, vol. 20, no. 10, pp. 3864–3873, 2000. View at Scopus
  188. S. R. Sesack, A. Y. Deutch, R. H. Roth, and B. S. Bunney, “Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin,” Journal of Comparative Neurology, vol. 290, no. 2, pp. 213–242, 1989. View at Publisher · View at Google Scholar · View at Scopus
  189. N. D. Volkow, G.-J. Wang, J. S. Fowler, D. Tomasi, and F. Telang, “Addiction: beyond dopamine reward circuitry,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 37, pp. 15037–15042, 2011. View at Publisher · View at Google Scholar · View at Scopus