About this Journal Submit a Manuscript Table of Contents
ISRN Obstetrics and Gynecology
Volume 2012 (2012), Article ID 172808, 7 pages
http://dx.doi.org/10.5402/2012/172808
Review Article

Early Detection of Maternal Risk for Preeclampsia

1Department of Obstetrics and Gynecology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
2Institute of Molecular Biology, University Hospital, Hufelandstraße 55, 45147 Essen, Germany
3Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London SE5 9RS, UK

Received 8 April 2012; Accepted 19 June 2012

Academic Editors: K. Chan, A. Malek, A. Martin-Hidalgo, and C. Romero

Copyright © 2012 B. Mikat et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Villar, “Eclampsia and pre-eclampsia: a health problem for 2000 years,” in Preeclampsia, H. Critchley, A. MacLean, and L. Poston, Eds., pp. 189–207, RCOG Press, London, UK, 2003.
  2. M. Noris, N. Perico, and G. Remuzzi, “Mechanisms of disease: pre-eclampsia,” Nature Clinical Practice Nephrology, vol. 1, no. 2, pp. 98–120, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. D. J. P. Barker, C. Osmond, T. J. Forsen, E. Kajantie, and J. G. Eriksson, “Maternal and social origins of hypertension,” Hypertension, vol. 50, no. 3, pp. 565–571, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. D. J. P. Barker, “Intrauterine programming of adult disease,” Molecular Medicine Today, vol. 1, no. 9, pp. 418–423, 1995. View at Scopus
  5. K. M. Godfrey, H. M. Inskip, and M. A. Hanson, “The long-term effects of prenatal development on growth and metabolism,” Seminars in Reproductive Medicine, vol. 29, no. 3, pp. 257–265, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. J. C. Cross, D. Baczyk, N. Dobric et al., “Genes, development and evolution of the placenta,” Placenta, vol. 24, no. 2-3, pp. 123–130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. M. Roberts and D. W. Cooper, “Pathogenesis and genetics of pre-eclampsia,” The Lancet, vol. 357, no. 9249, pp. 53–56, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. C. W. Redman and I. L. Sargent, “Latest advances in understanding preeclampsia,” Science, vol. 308, no. 5728, pp. 1592–1594, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. V. D. Winn, M. Gormley, and S. J. Fisher, “The impact of preeclampsia on gene expression at the maternal-fetal interface,” Pregnancy Hypertension, vol. 1, no. 1, pp. 100–108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Zhou, C. H. Damsky, K. Chiu, J. M. Roberts, and S. J. Fisher, “Preeclampsia is associated with abnormal expression of adhesion molecules by invasive cytotrophoblasts,” Journal of Clinical Investigation, vol. 91, no. 3, pp. 950–960, 1993. View at Scopus
  11. J. P. Kusanovic, R. Romero, T. Chaiworapongsa et al., “A prospective cohort study of the value of maternal plasma concentrations of angiogenic and anti-angiogenic factors in early pregnancy and midtrimester in the identification of patients destined to develop preeclampsia Prediction of preeclampsia,” Journal of Maternal-Fetal and Neonatal Medicine, vol. 22, no. 11, pp. 1021–1038, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Rolfo, A. Many, A. Racano et al., “Abnormalities in oxygen sensing define early and late onset preeclampsia as distinct pathologies,” PLoS ONE, vol. 5, no. 10, Article ID e13288, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. E. Banks, M. A. Forbes, J. Searles et al., “Evidence for the existence of a novel pregnancy-associated soluble variant of the vascular endothelial growth factor receptor, Flt-1,” Molecular Human Reproduction, vol. 4, no. 4, pp. 377–386, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. M. L. Veronese, A. Mosenkis, K. T. Flaherty et al., “Mechanisms of hypertension associated with BAY 43-9006,” Journal of Clinical Oncology, vol. 24, no. 9, pp. 1363–1369, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. H. M. W. Verheul and H. M. Pinedo, “Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition,” Nature Reviews Cancer, vol. 7, no. 6, pp. 475–485, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Verlohren, I. Herraiz, O. Lapaire, et al., “The sFlt-1/PlGF ratio in different types of hypertensive pregnancy disorders and its prognostic potential in preeclamptic patients,” American Journal of Obstetrics & Gynecology, vol. 206, no. 1, pp. 58.e1–58.e8, 2012.
  17. S. Rana, C. E. Powe, S. Salahuddin et al., “Angiogenic factors and the risk of adverse outcomes in women with suspected preeclampsia,” Circulation, vol. 125, no. 7, pp. 911–919, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. U. Perni, C. Sison, V. Sharma, et al., “Angiogenic factors in superimposed preeclampsia: a longitudinal study of women with chronic hypertension during pregnancy,” Hypertension, vol. 59, no. 3, pp. 740–746, 2012. View at Publisher · View at Google Scholar
  19. A. Rajakumar, A. S. Cerdeira, S. Rana, et al., “Transcriptionally active syncytial aggregates in the maternal circulation may contribute to circulating soluble fms-like tyrosine kinase 1 in preeclampsia,” Hypertension, vol. 59, no. 2, pp. 256–264, 2012. View at Publisher · View at Google Scholar
  20. A. Gellhaus, M. Schmidt, C. Dunk, S. J. Lye, R. Kimmig, and E. Winterhager, “Decreased expression of the angiogenic regulators CYR61 (CCN1) and NOV (CCN3) in human placenta is associated with pre-eclampsia,” Molecular Human Reproduction, vol. 12, no. 6, pp. 389–399, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Gellhaus, M. Schmidt, C. Dunk, S. J. Lye, and E. Winterhager, “The circulating proangiogenic factors CYR61 (CCN1) and NOV (CCN3) are significantly decreased in placentae and sera of preeclamptic patients,” Reproductive Sciences, vol. 14, no. 8, pp. 46–52, 2007. View at Scopus
  22. N. Wolf, W. Yang, C. E. Dunk et al., “Regulation of the matricellular proteins CYR61 (CCN1) and NOV (CCN3) by hypoxia-inducible factor-1α and transforming-growth factor-β3 in the human trophoblast,” Endocrinology, vol. 151, no. 6, pp. 2835–2845, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Yang, J. Wagener, and A. Gellhaus, “Impact of CCN3 (NOV) glycosylation on migration/invasion properties and cell growth of the choriocarcinoma cell line Jeg3,” Human Reproduction, vol. 26, no. 10, pp. 2850–2860, 2011.
  24. T. Plösch, A. Gellhaus, E. M. van Straten et al., “The liver X receptor, (LXR) and its target gene ABCA1 are regulated upon low oxygen in human trophoblast cells: a reason for alterations in preeclampsia?” Placenta, vol. 31, no. 10, pp. 910–918, 2010. View at Publisher · View at Google Scholar
  25. P. Ugocsai, A. Hohenstatt, G. Paragh et al., “HIF-1β determines ABCA1 expression under hypoxia in human macrophages,” International Journal of Biochemistry and Cell Biology, vol. 42, no. 2, pp. 241–252, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Bujold, A. M. Morency, S. Roberge, Y. Lacasse, J. C. Forest, and Y. Giguère, “Acetylsalicylic acid for the prevention of preeclampsia and intra-uterine growth restriction in women with abnormal uterine artery Doppler: a systematic review and meta-analysis,” Journal of Obstetrics and Gynaecology Canada, vol. 31, no. 9, pp. 818–826, 2009. View at Scopus
  27. J. C. Gris, C. Chauleur, N. Molinari, et al., “Addition of enoxaparin to aspirin for the secondary prevention of placental vascular complications in women with severe pre-eclampsia. The pilot randomized controlled NOH-PE trial,” Thrombosis and Haemostasis, vol. 106, no. 6, pp. 1053–1061, 2011. View at Publisher · View at Google Scholar
  28. J. I. de Vries, M. G. van Pampus, W. M. Hague, P. D. Bezemer, J. H. Joosten, and FRUIT investigators, “Low-molecular-weight heparin added to aspirin in the prevention of recurrent early-onset preeclampsia in women with inheritable thrombophilia: the FRUIT-RCT,” Journal of Thrombosis and Haemostasis, vol. 10, no. 1, pp. 64–72, 2012. View at Publisher · View at Google Scholar
  29. C. K. H. Yu, G. C. S. Smith, A. T. Papageorghiou, A. M. Cacho, and K. H. Nicolaides, “An integrated model for the prediction of preeclampsia using maternal factors and uterine artery Doppler velocimetry in unselected low-risk women,” American Journal of Obstetrics and Gynecology, vol. 193, no. 2, pp. 429–436, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Sibai, G. Dekker, and M. Kupferminc, “Pre-eclampsia,” The Lancet, vol. 365, no. 9461, pp. 785–799, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. E. A. P. Steegers, P. von Dadelszen, J. J. Duvekot, and R. Pijnenborg, “Pre-eclampsia,” The Lancet, vol. 376, no. 9741, pp. 631–644, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Benedetto, L. Marozio, A. M. Tavella, L. Salton, S. Grivon, and F. Di Giampaolo, “Coagulation disorders in pregnancy: acquired and inherited thrombophilias,” Annals of the New York Academy of Sciences, vol. 1205, pp. 106–117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Skjaerven, A. J. Wilcox, and R. T. Lie, “The interval between pregnancies and the risk of preeclampsia,” The New England Journal of Medicine, vol. 346, no. 1, pp. 33–38, 2002.
  34. L. C. Y. Poon, I. Staboulidou, N. Maiz, W. Plasencia, and K. H. Nicolaides, “Hypertensive disorders in pregnancy: screening by uterine artery Doppler at 11–13 weeks,” Ultrasound in Obstetrics and Gynecology, vol. 34, no. 2, pp. 142–148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. L. C. Y. Poon, N. A. Kametas, C. Valencia, T. Chelemen, and K. H. Nicolaides, “Hypertensive disorders in pregnancy: screening by systolic diastolic and mean arterial pressure at 11–13 weeks,” Hypertension in Pregnancy, vol. 30, no. 1, pp. 93–107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. I. A. Brosens, W. B. Robertson, and H. G. Dixon, “The role of spiral arteries in the pathogenesis of preeclampsia,” in Obstetrics and Gynecology Annual, R. M. Wynn, Ed., pp. 177–191, Appleton-Century-Crafts, New York, NY, USA, 1972.
  37. R. Pijnenborg, L. Vercruysse, and M. Hanssens, “The uterine spiral arteries in human pregnancy: facts and controversies,” Placenta, vol. 27, no. 9-10, pp. 939–958, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. T. R. Lovgren, L. Dugoff, and H. L. Galan, “Uterine artery Doppler and prediction of preeclampsia,” Clinical Obstetrics and Gynecology, vol. 53, no. 4, pp. 888–898, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. R. O. Bahado-Singh and C. Jodicke, “Uterine artery Doppler in first-trimester pregnancy screening,” Clinical Obstetrics and Gynecology, vol. 53, no. 4, pp. 879–887, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Carbillon, “First trimester uterine artery Doppler for the prediction of preeclampsia and foetal growth restriction,” Journal of Maternal-Fetal and Neonatal Medicine, vol. 25, no. 7, pp. 877–883, 2012.
  41. H. S. Cuckle, “Screening for pre-eclampsia-lessons from aneuploidy screening,” Placenta, vol. 32, supplement 1, pp. S42–S48, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Costa, P. Murthi, R. Keogh, and N. Woodrow, “Early screening for preeclampsia,” Revista Brasileira de Ginecologia e Obstetrícia, vol. 33, no. 11, pp. 367–375, 2011.
  43. A. C. Pedrosa and A. Matias, “Screening for pre-eclampsia: a systematic review of tests combining uterine artery Doppler with other markers.,” Journal of Perinatal Medicine, vol. 39, no. 6, pp. 619–635, 2011. View at Publisher · View at Google Scholar
  44. H. Stepan, A. Geipel, F. Schwarz, T. Krämer, N. Wessel, and R. Faber, “Circulatory soluble endoglin and its predictive value for preeclampsia in second-trimester pregnancies with abnormal uterine perfusion,” American Journal of Obstetrics and Gynecology, vol. 198, no. 2, pp. 175.e1–175.e6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. C. J. Lockwood, G. Krikun, R. Caze, M. Rahman, L. F. Buchwalder, and F. Schatz, “Decidual cell-expressed tissue factor in human pregnancy and its involvement in hemostasis and preeclampsia-related angiogenesis,” Annals of the New York Academy of Sciences, vol. 1127, pp. 67–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Schmidt, C. Dogan, C. Birdir et al., “Altered angiogenesis in preeclampsia: evaluation of a new test system for measuring placental growth factor,” Clinical Chemistry and Laboratory Medicine, vol. 45, no. 11, pp. 1504–1510, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Schmidt, C. Dogan, C. Birdir et al., “Placental growth factor: a predictive marker for preeclampsia?” Gynakologisch-geburtshilfliche Rundschau, vol. 49, no. 2, pp. 94–99, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Akolekar, E. Zaragoza, L. C. Y. Poon, S. Pepes, and K. H. Nicolaides, “Maternal serum placental growth factor at 11+0 to 13+6 weeks of gestation in the prediction of pre-eclampsia,” Ultrasound in Obstetrics and Gynecology, vol. 32, no. 6, pp. 732–739, 2008. View at Publisher · View at Google Scholar
  49. L. J. Vatten, A. Eskild, T. I. L. Nilsen, S. Jeansson, P. A. Jenum, and A. C. Staff, “Changes in circulating level of angiogenic factors from the first to second trimester as predictors of preeclampsia,” American Journal of Obstetrics and Gynecology, vol. 196, no. 3, pp. 239.e1–239.e6, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Rana, S. A. Karumanchi, R. J. Levine et al., “Sequential changes in antiangiogenic factors in early pregnancy and risk of developing preeclampsia,” Hypertension, vol. 50, no. 1, pp. 137–142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Kuc, E. J. Wortelboer, B. B. van Rijn, A. Franx, G. H. A. Visser, and P. C. J. I. Schielen, “Evaluation of 7 serum biomarkers and uterine artery Doppler ultrasound for first-trimester prediction of preeclampsia: a systematic review,” Obstetrical and Gynecological Survey, vol. 66, no. 4, pp. 225–239, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. B. Mikat, A. Zeller, A. Scherag, et al., “βhCG and PAPP-A in first trimester: predictive factors for preeclampsia?” Hypertens Pregnancy, vol. 31, no. 2, pp. 261–267, 2012.
  53. K. Spencer, N. J. Cowans, and K. H. Nicolaides, “Low levels of maternal serum PAPP-A in the first trimester and the risk of pre-eclampsia,” Prenatal Diagnosis, vol. 28, no. 1, pp. 7–10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Akolekar, A. Syngelaki, R. Sarquis, M. Zvanca, and K. H. Nicolaides, “Prediction of early, intermediate and late pre-eclampsia from maternal factors, biophysical and biochemical markers at 11–13 weeks,” Prenatal Diagnosis, vol. 31, no. 1, pp. 66–74, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Akolekar, A. Etchegaray, Y. Zhou, N. Maiz, and K. H. Nicolaides, “Maternal serum activin A at 11–13 weeks of gestation in hypertensive disorders of pregnancy,” Fetal Diagnosis and Therapy, vol. 25, no. 3, pp. 320–327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. R. Akolekar, R. Minekawa, A. Veduta, X. C. Romero, and K. H. Nicolaides, “Maternal plasma inhibin A at 11–13 weeks of gestation in hypertensive disorders of pregnancy,” Prenatal Diagnosis, vol. 29, no. 8, pp. 753–760, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. B. Huppertz, M. Sammar, I. Chefetz, P. Neumaier-Wagner, C. Bartz, and H. Meiri, “Longitudinal determination of serum placental protein 13 during development of preeclampsia,” Fetal Diagnosis and Therapy, vol. 24, no. 3, pp. 230–236, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Khalil, N. J. Cowans, K. Spencer, S. Goichman, H. Meiri, and K. Harrington, “First trimester maternal serum placental protein 13 for the prediction of pre-eclampsia in women with a priori high risk,” Prenatal Diagnosis, vol. 29, no. 8, pp. 781–789, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. I. Chafetz, I. Kuhnreich, M. Sammar et al., “First-trimester placental protein 13 screening for preeclampsia and intrauterine growth restriction,” American Journal of Obstetrics and Gynecology, vol. 197, no. 1, pp. 35.e1–37.e1, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Spencer, N. J. Cowans, I. Chefetz, J. Tal, and H. Meiri, “First-trimester maternal serum PP-13, PAPP-A and second-trimester uterine artery Doppler pulsatility index as markers of pre-eclampsia,” Ultrasound in Obstetrics and Gynecology, vol. 29, no. 2, pp. 128–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. O. Burger, E. Pick, J. Zwickel et al., “Placental protein 13 (PP-13): effects on cultured trophoblasts, and its detection in human body fluids in normal and pathological pregnancies,” Placenta, vol. 25, no. 7, pp. 608–622, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Garlanda, B. Bottazzi, A. Bastone, and A. Mantovani, “Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility,” Annual Review of Immunology, vol. 23, pp. 337–366, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. L. C. Y. Poon, R. Akolekar, R. Lachmann, J. Beta, and K. H. Nicolaides, “Hypertensive disorders in pregnancy: screening by biophysical and biochemical markers at 11–13 weeks,” Ultrasound in Obstetrics and Gynecology, vol. 35, no. 6, pp. 662–670, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. L. C. Y. Poon, V. Stratieva, S. Piras, S. Piri, and K. H. Nicolaides, “Hypertensive disorders in pregnancy: combined screening by uterine artery Doppler, blood pressure and serum PAPP-A at 11–13 weeks,” Prenatal Diagnosis, vol. 30, no. 3, pp. 216–223, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. J. P. Granger, B. T. Alexander, M. T. Llinas, W. A. Bennett, and R. A. Khalil, “Pathophysiology of hypertension during preeclampsia linking placental ischemia with endothelial dysfunction,” Hypertension, vol. 38, no. 3, pp. 718–722, 2001. View at Scopus
  66. S. Sifakis, R. Akolekar, D. Kappou, N. Mantas, and K. H. Nicolaides, “Maternal serum insulin-like growth factor-binding protein-1 (IGFBP-1) at 11–13 weeks in pre-eclampsia,” Prenatal Diagnosis, vol. 31, no. 2, pp. 196–201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Sifakis, R. Akolekar, D. Kappou, N. Mantas, and K. H. Nicolaides, “Maternal serum insulin-like growth factor-binding protein-3 (IGFBP-3) at 11–13 weeks in pre-eclampsia,” Journal of Human Hypertension, vol. 26, no. 4, pp. 253–258, 2012.
  68. S. Nanda, C. K. H. Yu, L. Giurcaneanu, R. Akolekar, and K. H. Nicolaides, “Maternal serum adiponectin at 11–13 weeks of gestation in preeclampsia,” Fetal Diagnosis and Therapy, vol. 29, no. 3, pp. 208–215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Nanda, L. C. Y. Poon, M. Muhaisen, I. C. Acosta, and K. H. Nicolaides, “Maternal serum resistin at 11 to 13 weeks' gestation in normal and pathological pregnancies,” Metabolism, vol. 61, no. 5, pp. 699–705, 2012. View at Publisher · View at Google Scholar · View at Scopus
  70. A. A. Khalil, D. Tsikas, R. Akolekar, J. Jordan, and K. H. Nicolaides, “Asymmetric dimethylarginine, arfinine and homoarginine at 11–13 weeks gestation andpreeclampsia: a case-control study,” Journal of Human Hypertension. In press. View at Publisher · View at Google Scholar
  71. A. Ives, C. Saunders, M. Bulsara, and J. Semmens, “Pregnancy after breast cancer: population based study,” British Medical Journal, vol. 334, no. 7586, pp. 194–196, 2007. View at Publisher · View at Google Scholar · View at Scopus