About this Journal Submit a Manuscript Table of Contents
ISRN Oceanography
Volume 2013 (2013), Article ID 604045, 16 pages
http://dx.doi.org/10.5402/2013/604045
Review Article

Lipids in Marine Ecosystems

Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada A1C 5S7

Received 10 January 2013; Accepted 2 February 2013

Academic Editors: M. Elskens and J. L. Zhou

Copyright © 2013 Christopher C. Parrish. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Miller and J. C. Miller, Statistics and Chemometrics for Analytical Chemistry, Prentice Hall, 6th edition, 2010.
  2. P. E. Kepkay, “Colloids and the ocean carbon cycle,” in Marine Chemistry, P. J. Wangersky, Ed., pp. 35–56, Springer, Heidelberg, Germany, 2000.
  3. Q. Liu, C. C. Parrish, and R. Helleur, “Lipid class and carbohydrate concentrations in marine colloids,” Marine Chemistry, vol. 60, no. 3-4, pp. 177–188, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. C. C. Parrish, “Determination of total lipid, lipid classes, and fatty acids in aquatic samples,” in Lipids in Freshwater Ecosystems, M. T. Arts and B. C. Wainman, Eds., pp. 4–20, Springer, New York, NY, USA, 1999.
  5. S. M. Budge, S. J. Iverson, and H. N. Koopman, “Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation,” Marine Mammal Science, vol. 22, no. 4, pp. 759–801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. B. J. Bergen, J. G. Quinn, and C. C. Parrish, “Quality-assurance study of marine lipid-class determination using Chromarod/Iatroscan thin-layer chromatography-flame ionization detector,” Environmental Toxicology and Chemistry, vol. 19, no. 9, pp. 2189–2197, 2000. View at Scopus
  7. Y. Lu, S. A. Ludsin, D. L. Fanslow, and S. A. Pothoven, “Comparison of three microquantity techniques for measuring total lipids in fish,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 65, no. 10, pp. 2233–2241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. C. C. Parrish, T. A. Abrajano, S. M. Budge et al., “Lipid and phenolic biomarkers in marine ecosystems: analysis and applications,” in Marine Chemistry, P. J. Wangersky, Ed., pp. 193–223, Springer, Heidelberg, Germany, 2000.
  9. C. C. Parrish, G. Bodennec, and P. Gentien, “Determination of glycoglycerolipids by Chromarod thin-layer chromatography with Iatroscan flame ionization detection,” Journal of Chromatography A, vol. 741, no. 1, pp. 91–97, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. T. S. Bianchi and E. A. Canuel, Chemical Biomarkers in Aquatic Ecosystems, Princeton University Press, 2011.
  11. K. Fischer, E. Fries, W. Körner, C. Schmalz, and C. Zwiener, “New developments in the trace analysis of organic water pollutants,” Applied Microbiology and Biotechnology, vol. 94, pp. 11–28, 2012.
  12. A. Cincinelli, F. Pieri, Y. Zhang, M. Seed, and K. C. Jones, “Compound specific isotope analysis (CSIA) for chlorine and bromine: a review of techniques and applications to elucidate environmental sources and processes,” Environmental Pollution, vol. 169, pp. 112–127, 2012.
  13. C. Schlechtriem, R. James Henderson, and D. R. Tocher, “A critical assessment of different transmethylation procedures commonly employed in the fatty acid analysis of aquatic organisms,” Limnology and Oceanography, vol. 6, pp. 523–531, 2008. View at Scopus
  14. C. T. Marshall, N. A. Yaragina, B. Ådlandsvik, and A. V. Dolgov, “Reconstructing the stock-recruit relationship for Northeast Arctic cod using a bioenergetic index of reproductive potential,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 57, no. 12, pp. 2433–2442, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. C. T. Marshall, N. A. Yaragina, Y. Lambert, and O. S. Kjesbu, “Total lipid energy as a proxy for total egg production by fish stocks,” Nature, vol. 402, no. 6759, pp. 288–290, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. F. De Laender, D. Van Oevelen, S. Frantzen, J. J. Middelburg, and K. Soetaert, “Seasonal PCB bioaccumulation in an Arctic marine ecosystem: a model analysis incorporating lipid dynamics, food-web productivity and migration,” Environmental Science and Technology, vol. 44, no. 1, pp. 356–361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Hamoutene, H. Volkoff, C. Parrish et al., “Effect of produced water on innate immunity, feeding and antioxidant metabolism in Atlantic cod (Gadus morhua),” in Produced Water, K. Lee and J. Neff, Eds., chapter 16, pp. 311–328, Springer, New York, NY, USA, 2011.
  18. M. T. Arts, R. G. Ackman, and B. J. Holub, ““Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 58, no. 1, pp. 122–137, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. M. T. Arts, M. T. Brett, and M. J. Kainz, Eds., Lipids in Aquatic Ecosystems, Springer, Dordrecht, The Netherlands, 2009.
  20. G. Ahlgren, T. Vrede, and W. Goedkoop, “Fatty acid ratios in freshwater fish, zooplankton and zoobenthos—are there specific optima?” in Lipids in Aquatic Ecosystems, M. T. Arts, M. T. Brett, and M. J. Kainz, Eds., chapter 7, pp. 147–178, Springer, Dordrecht, The Netherlands, 2009.
  21. M. T. Brett, D. C. Müller-Navarra, and J. Persson, “Crustacean zooplankton fatty acid composition,” in Lipids in Aquatic Ecosystems, M. T. Arts, M. T. Brett, and M. J. Kainz, Eds., chapter 6, pp. 115–146, Springer, Dordrecht, The Netherlands, 2009.
  22. B. D. Glencross, “Exploring the nutritional demand for essential fatty acids by aquaculture species,” Reviews in Aquaculture, vol. 1, pp. 71–124, 2009.
  23. D. Martin-Creuzburg and E. von Elert, in Ecological Significance of Sterols in Aquatic Food Webs Lipids in Aquatic Ecosystems, M. T. Arts, M. T. Brett, and M. J. Kainz, Eds., chapter 3, pp. 43–64, Springer, Dordrecht, The Netherlands, 2009.
  24. C. C. Parrish, “Essential fatty acids in aquatic food webs,” in Lipids in Aquatic Ecosystems, M. T. Arts, M. T. Brett, and M. J. Kainz, Eds., chapter 13, pp. 309–326, Springer, Dordrecht, The Netherlands, 2009.
  25. D. W. Pond and G. A. Tarling, “Phase transitions of wax esters adjust buoyancy in diapausing Calanoides acutus,” Limnology and Oceanography, vol. 56, no. 4, pp. 1310–1318, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. J. G. Metz, P. Roessler, D. Facciotti et al., “Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes,” Science, vol. 293, no. 5528, pp. 290–293, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. D. C. Müller-Navarra, M. T. Brett, A. M. Liston, and C. R. Goldman, “A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers,” Nature, vol. 403, no. 6765, pp. 74–77, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. D. C. Müller-Navarra, M. T. Brett, S. Park et al., “Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes,” Nature, vol. 427, no. 6969, pp. 69–72, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Wacker, P. Becher, and E. Von Elert, “Food quality effects of unsaturated fatty acids on larvae of the zebra mussel Dreissena polymorpha,” Limnology and Oceanography, vol. 47, no. 4, pp. 1242–1248, 2002. View at Scopus
  30. D. Montero, T. Kalinowski, A. Obach et al., “Vegetable lipid sources for gilthead seabream (Sparus aurata): effects on fish health,” Aquaculture, vol. 225, no. 1–4, pp. 353–370, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Montero, J. Socorro, L. Tort et al., “Glomerulonephritis and immunosuppression associated with dietary essential fatty acid deficiency in gilthead sea bream, Sparus aurata L., juveniles,” Journal of Fish Diseases, vol. 27, no. 5, pp. 297–306, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Masuda and K. Tsukamoto, “School formation and concurrent developmental changes in carangid fish with reference to dietary conditions,” Environmental Biology of Fishes, vol. 56, no. 1-2, pp. 243–252, 1999. View at Scopus
  33. M. A. Crawford and C. L. Broadhurst, “The role of docosahexaenoic and the marine food web as determinants of evolution and hominid brain development: the challenge for human sustainability,” Nutrition and Health, vol. 21, pp. 17–39, 2012.
  34. J. G. Bell, L. A. McEvoy, A. Estevez, R. J. Shields, and J. R. Sargent, “Optimising lipid nutrition in first-feeding flatfish larvae,” Aquaculture, vol. 227, no. 1–4, pp. 211–220, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Ciapa, D. Allemand, and G. De Renzis, “Effect of arachidonic acid on Na+/H+ exchange and neutral amino acid transport in sea urchin eggs,” Experimental Cell Research, vol. 218, no. 1, pp. 248–254, 1995. View at Publisher · View at Google Scholar · View at Scopus
  36. L. A. Copeman and C. C. Parrish, “Marine lipids in a cold coastal ecosystem: Gilbert Bay, Labrador,” Marine Biology, vol. 143, no. 6, pp. 1213–1227, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. L. M. Milke, V. M. Bricelj, and C. C. Parrish, “Growth of postlarval sea scallops, Placopecten magellanicus, on microalgal diets, with emphasis on the nutritional role of lipids and fatty acids,” Aquaculture, vol. 234, no. 1–4, pp. 293–317, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Pernet, V. M. Bricelj, and C. C. Parrish, “Effect of varying dietary levels of ω6 polyunsaturated fatty acids during the early ontogeny of the sea scallop, Placopecten magellanicus,” Journal of Experimental Marine Biology and Ecology, vol. 327, no. 2, pp. 115–133, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. L. M. Milke, V. M. Bricelj, and C. C. Parrish, “Comparison of early life history stages of the bay scallop, Argopecten irradians: effects of microalgal diets on growth and biochemical composition,” Aquaculture, vol. 260, no. 1–4, pp. 272–289, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. C. C. Parrish, M. Whiticar, and V. Puvanendran, “Is ω6 docosapentaenoic acid an essential fatty acid during early ontogeny in marine fauna?” Limnology and Oceanography, vol. 52, no. 1, pp. 476–479, 2007. View at Scopus
  41. S. Hong, K. Gronert, P. R. Devchand, R. L. Moussignac, and C. N. Serhan, “Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells: autacoids in anti-inflammation,” Journal of Biological Chemistry, vol. 278, no. 17, pp. 14677–14687, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Hong, E. Tjonahen, E. L. Morgan, Y. Lu, C. N. Serhan, and A. F. Rowley, “Rainbow trout (Oncorhynchus mykiss) brain cells biosynthesize novel docosahexaenoic acid-derived resolvins and protectins—mediator lipidomic analysis,” Prostaglandins and Other Lipid Mediators, vol. 78, no. 1–4, pp. 107–116, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. M. P. Lesser, “Oxidative stress in marine environments: biochemistry and physiological ecology,” Annual Review of Physiology, vol. 68, pp. 253–278, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. J. A. Marshall, T. Ross, S. Pyecroft, and G. Hallegraeff, “Superoxide production by marine microalgae: II. Towards understanding ecological consequences and possible functions,” Marine Biology, vol. 147, no. 2, pp. 541–549, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. E. L. Crockett, “The cold but not hard fats in ectotherms: consequences of lipid restructuring on susceptibility of biological membranes to peroxidation, a review,” Journal of Comparative Physiology B, vol. 178, no. 7, pp. 795–809, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. S. B. Watson, G. Caldwell, and G. Pohnert, “Fatty acids and oxylipins as semiochemicals,” in Lipids in Aquatic Ecosystems, M. T. Arts, M. T. Brett, and M. J. Kainz, Eds., chapter 4, pp. 65–91, Springer, Dordrecht, The Netherlands, 2009.
  47. A. Ianora and A. Miralto, “Toxigenic effects of diatoms on grazers, phytoplankton and other microbes: a review,” Ecotoxicology, vol. 19, no. 3, pp. 493–511, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Arzul, P. Gentien, and G. Bodennec, “Potential toxicity of microalgal polyunsaturated fatty acids (PUFAs),” in Marine Lipids, pp. 53–62, IFREMER, Plouzané, France, 1998.
  49. M. Ikawa, “Algal polyunsaturated fatty acids and effects on plankton ecology and other organisms,” UNH Center For Freshwater Biology Research, vol. 6, pp. 17–44, 2004.
  50. G. S. Caldwell, “The influence of bioactive oxylipins from marine diatoms on invertebrate reproduction and development,” Marine Drugs, vol. 7, no. 3, pp. 367–400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. J. J. Dorantes-Aranda, L. M. G. D. L. Parra, R. Alonso-Rodríguez, and L. Morquecho, “Hemolytic activity and fatty acids composition in the ichthyotoxic dinoflagellate Cochlodinium polykrikoides isolated from Bahía de La Paz, Gulf of California,” Marine Pollution Bulletin, vol. 58, no. 9, pp. 1401–1405, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Chen, T. Yan, R. Yu, and M. Zhou, “Toxic effects of Karenia mikimotoi extracts on mammalian cells,” Chinese Journal of Oceanology and Limnology, vol. 29, pp. 860–868, 2011.
  53. T. Yasumoto, B. Underdal, T. Aune, V. Hormazabal, O. M. Skulberg, and Y. Oshima, “Screening for hemolytic and ichthyotoxic components of Chrysochromulina polyepis and Gyrodinium aureolum from Norwegian coastal waters,” in Toxic Marine Phytoplankton, E. Granéli, B. Sundstrom, L. Edler, and D. M. Anderson, Eds., pp. 436–440, Elsevier, New York, NY, USA, 1990.
  54. C. C. Parrish, G. Bodennec, and P. Gentien, “Haemolytic glycoglycerolipids from Gymnodinium species,” Phytochemistry, vol. 47, no. 5, pp. 783–787, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. J. F. Lawrence, R. K. Chadha, W. M. N. Ratnayake, and J. F. Truelove, “An incident of elevated levels of unsaturated free fatty acids in mussels from Nova Scotia and their toxic effect in mice after intraperitoneal injection,” Natural Toxins, vol. 2, no. 5, pp. 318–321, 1994. View at Publisher · View at Google Scholar · View at Scopus
  56. D. R. Lide, CRC Press, Boca Raton, Fla, USA, 72nd edition, 1991.
  57. W. Yongmanitchai and O. P. Ward, “Positional distribution of fatty acids, and molecular species of polar lipids, in the diatom Phaeodactylum tricornutum,” Journal of General Microbiology, vol. 139, no. 3, pp. 465–472, 1993. View at Scopus
  58. M. E. Bégin, “Effects of polyunsaturated fatty acids and of their oxidation products on cell survival,” Chemistry and Physics of Lipids, vol. 45, pp. 269–313, 1987.
  59. R. Wang and Y. Shimizu, “Bacillariolides I and II, a new type of cyclopentane eicosanoids from the diatom Nitzschia pungens,” Journal of the Chemical Society, no. 5, pp. 413–414, 1990. View at Scopus
  60. Y. Shimizu, “Microalgal metabolites: a new perspective,” Annual Review of Microbiology, vol. 50, pp. 431–465, 1996. View at Publisher · View at Google Scholar · View at Scopus
  61. R. Wang, L. Maranda, P. E. Hargraves, and Y. Shimizu, “Chemical variation of Nitzschia pungens as demonstated by the co-occurrence of domoic acid and bacillariolides,” in Toxic Phytoplankton Blooms in the Sea, T. J. Smayda and Y. Shimizu, Eds., pp. 637–641, Elsevier, 1993.
  62. M. K. de Boer, C. Boerée, S. B. Sjollema, T. de Vries, A. D. Rijnsdorp, and A. G. J. Buma, “The toxic effect of the marine raphidophyte Fibrocapsa japonica on larvae of the common flatfish sole (Solea solea),” Harmful Algae, vol. 17, pp. 92–101, 2012.
  63. E. Parish, “The biosynthesis of oxysterols in plants and microorangisms,” in Physiology and Biochemistry of Sterols, G. W. Patterson and W. D. Nes, Eds., chapter 11, pp. 324–336, AOCS, Il, 1991.
  64. J. Pickova, P. C. Dutta, A. Pettersson, L. Frøyland, and A. Kiessling, “Eggs of Baltic salmon displaying M74, yolk sac mortality syndrome have elevated levels of cholesterol oxides and the fatty acid 22 : 6 n-3,” Aquaculture, vol. 227, no. 1–4, pp. 63–75, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. R. Winter and W. Dzwolak, “Exploring the temperature-pressure configurational landscape of biomolecules: from lipid membranes to proteins,” Philosophical Transactions of the Royal Society A, vol. 363, no. 1827, pp. 537–563, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. S. D'Amico, T. Collins, J. C. Marx, G. Feller, and C. Gerday, “Psychrophilic microorganisms: challenges for life,” EMBO Reports, vol. 7, no. 4, pp. 385–389, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. M. T. Arts and C. C. Kohler, “Health and condition in fish: the influence of lipids on membrane competency and immune response,” in Lipids in Aquatic Ecosystems, M. T. Arts, M. T. Brett, and M. J. Kainz, Eds., chapter 10, pp. 237–255, Springer, Dordrecht, The Netherlands, 2009.
  68. G. J. Parent, F. Pernet, R. Tremblay, J. M. Sévigny, and M. Ouellette, “Remodeling of membrane lipids in gills of adult hard clam Mercenaria mercenaria during declining temperature,” Aquatic Biology, vol. 3, no. 2, pp. 101–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. R. J. Snyder, W. D. Schregel, and Y. Wei, “Effects of thermal acclimation on tissue fatty acid composition of freshwater alewives (Alosa pseudoharengus),” Fish Physiology and Biochemistry, vol. 38, pp. 363–373, 2012. View at Publisher · View at Google Scholar · View at Scopus
  70. J. R. Hazel, “Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation?” Annual Review of Physiology, vol. 57, pp. 19–42, 1995. View at Scopus
  71. J. M. Hall, C. C. Parrish, and R. J. Thompson, “Eicosapentaenoic acid regulates scallop (Placopecten magellanicus) membrane fluidity in response to cold,” Biological Bulletin, vol. 202, no. 3, pp. 201–203, 2002. View at Scopus
  72. I. Dey, C. Buda, T. Wiik, J. E. Halver, and T. Farkas, “Molecular and structural composition of phospholipid membranes in livers of marine and freshwater fish in relation to temperature,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 16, pp. 7498–7502, 1993. View at Scopus
  73. C. Buda, I. Dey, N. Balogh et al., “Structural order of membranes and composition of phospholipids in fish brain cells during thermal acclimatization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 17, pp. 8234–8238, 1994. View at Publisher · View at Google Scholar · View at Scopus
  74. E. Fodor, R. H. Jones, C. Buda, K. Kitajka, I. Dey, and T. Farkas, “Molecular architecture and biophysical properties of phospholipids during thermal adaptation in fish: an experimental and model study,” Lipids, vol. 30, no. 12, pp. 1119–1126, 1995. View at Publisher · View at Google Scholar · View at Scopus
  75. T. Farkas, K. Kitajka, E. Fodor et al., “Docosahexaenoic acid-containing phospholipid molecular species in brains of vertebrates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 12, pp. 6362–6366, 2000. View at Publisher · View at Google Scholar · View at Scopus
  76. L. A. Bowden, C. J. Restall, and A. F. Rowley, “The influence of environmental temperature on membrane fluidity, fatty acid composition and lipoxygenase product generation in head kidney leucocytes of the rainbow trout, Oncorhynchus mykiss,” Comparative Biochemistry and Physiology B, vol. 115, no. 3, pp. 375–382, 1996. View at Publisher · View at Google Scholar · View at Scopus
  77. L. A. Copeman and C. C. Parrish, “Lipids classes, fatty acids, and sterols in seafood from Gilbert Bay, southern Labrador,” Journal of Agricultural and Food Chemistry, vol. 52, no. 15, pp. 4872–4881, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. C. C. Parrish, L. M. Milke, and V. M. Bricelj, “Characterisation of 4α-methyl sterols in Pavlova spp. and postlarval sea scallops, Placopecten magellanicus,” Aquaculture, vol. 311, no. 1–4, pp. 261–262, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. G. E. Napolitano, B. A. MacDonald, R. J. Thompson, and R. G. Ackman, “Lipid composition of eggs and adductor muscle in giant scallops (Placopecten magellanicus) from different habitats,” Marine Biology, vol. 113, no. 1, pp. 71–76, 1992. View at Publisher · View at Google Scholar · View at Scopus
  80. S. M. Budge and C. C. Parrish, “FA determination in cold water marine samples,” Lipids, vol. 38, no. 7, pp. 781–791, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. J. P. Bergé and G. Barnathan, “Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects,” Advances in Biochemical Engineering/Biotechnology, vol. 96, pp. 49–125, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. J. Dalsgaard, M. S. John, G. Kattner, D. Müller-Navarra, and W. Hagen, “Fatty acid trophic markers in the pelagic marine environment,” Advances in Marine Biology, vol. 46, pp. 225–340, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. J. R. Kelly and R. E. Scheibling, “Fatty acids as dietary tracers in benthic food webs,” Marine Ecology Progress Series, vol. 446, pp. 1–22, 2012.
  84. T. L. Connelly, D. Deibel, and C. C. Parrish, “Trophic interactions in the benthic boundary layer of the Beaufort Sea Shelf, Arctic Ocean: combining bulk stable isotope and fatty acid signatures,” Progress in Oceanography. In press.
  85. E. M. George and C. C. Parrish, “Invertebrate uptake of lipids in the vicinity of Atlantic salmon (Salmo salar) aquaculture sites in British Columbia,” Aquaculture Research. In press.
  86. S. Rossi, E. Isla, S. Fietz, A. Martínez-Garcia, E. Sañé, and N. Teixidò, “Temporal variation of seston biomarkers within the Humboldt Current System off northern Chile (21S): first simultaneous records on fatty acids, n-alkanes and glycerol-dialkyl-glycerol-tetraethers (GDGT),” Advances in Oceanography and Limnology, vol. 3, pp. 17–40, 2012.
  87. M. M. Joseph, K. R. Renjith, C. S. Ratheesh Kumar, and N. Chandramohanakumar, “Assessment of organic matter sources in the tropical mangrove ecosystems of Cochin, Southwest India,” Environmental Forensics, vol. 13, pp. 262–271, 2012.
  88. G. Kattner, W. Hagen, R. F. Lee et al., “Perspectives on marine zooplankton lipids,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 64, no. 11, pp. 1628–1639, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Goutx, C. Guigue, D. Aritio et al., “Short term summer to autumn variability of dissolved lipid classes in the Ligurian sea (NW Mediterranean),” Biogeosciences, vol. 6, no. 7, pp. 1229–1246, 2009. View at Scopus
  90. C. C. Parrish, “Dissolved and particulate marine lipid classes: a review,” Marine Chemistry, vol. 23, no. 1-2, pp. 17–40, 1988. View at Scopus
  91. J. C. Marty, M. Goutx, C. Guigue, N. Leblond, and P. Raimbault, “Short-term changes in particulate fluxes measured by drifting sediment traps during end summer oligotrophic regime in the NW Mediterranean Sea,” Biogeosciences, vol. 6, pp. 887–899, 2009.
  92. N. Bourguet, M. Goutx, J. F. Ghiglione et al., “Lipid biomarkers and bacterial lipase activities as indicators of organic matter and bacterial dynamics in contrasted regimes at the DYFAMED site, NW Mediterranean,” Deep-Sea Research II, vol. 56, no. 18, pp. 1454–1469, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. R. Galois, P. Richard, and B. Fricourt, “Seasonal variations in suspended particulate matter in the Marennes-Oleron Bay, France, using lipids as biomarkers,” Estuarine, Coastal and Shelf Science, vol. 43, no. 3, pp. 335–357, 1996. View at Publisher · View at Google Scholar · View at Scopus
  94. P. D. Nichols, A. C. Palmisano, M. S. Rayner, G. A. Smith, and D. C. White, “Changes in the lipid composition of Antarctic sea-ice diatom communities during a spring bloom: an indication of community physiological status,” Antarctic Science, vol. 1, no. 2, pp. 133–140, 1989. View at Scopus
  95. J. C. Drazen, C. F. Phleger, M. A. Guest, and P. D. Nichols, “Lipid, sterols and fatty acid composition of abyssal holothurians and ophiuroids from the North-East Pacific Ocean: food web implications,” Comparative Biochemistry and Physiology B, vol. 151, no. 1, pp. 79–87, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. S. J. Iverson, C. Field, W. D. Bowen, and W. Blanchard, “Quantitative fatty acid signature analysis: a new method of estimating predator diets,” Ecological Monographs, vol. 74, no. 2, pp. 211–235, 2004. View at Scopus
  97. S. Rossi, A. Sabatés, M. Latasa, and E. Reyes, “Lipid biomarkers and trophic linkages between phytoplankton, zooplankton and anchovy (Engraulis encrasicolus) larvae in the NW Mediterranean,” Journal of Plankton Research, vol. 28, no. 6, pp. 551–562, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. S. J. Iverson, “Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination,” in Lipids in Aquatic Ecosystems, M. T. Arts, M. T. Brett, and M. J. Kainz, Eds., chapter 12, pp. 281–307, Springer, Dordrecht, The Netherlands, 2009.
  99. M. M. Pollierer, S. Scheu, and D. Haubert, “Taking it to the next level: trophic transfer of marker fatty acids from basal resource to predators,” Soil Biology and Biochemistry, vol. 42, no. 6, pp. 919–925, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. P. Pepin, C. C. Parrish, and E. J. H. Head, “Late autumn condition of Calanus finmarchicus in the northwestern Atlantic: evidence of size-dependent differential feeding,” Marine Ecology Progress Series, vol. 423, pp. 155–166, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Graeve, G. Kattner, and D. Piepenburg, “Lipids in Arctic benthos: does the fatty acid and alcohol composition reflect feeding and trophic interactions?” Polar Biology, vol. 18, no. 1, pp. 53–61, 1997. View at Publisher · View at Google Scholar · View at Scopus
  102. C. C. Parrish, D. Deibel, and R. J. Thompson, “Effect of sinking spring phytoplankton blooms on lipid content and composition in suprabenthic and benthic invertebrates in a cold ocean coastal environment,” Marine Ecology Progress Series, vol. 391, pp. 33–51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Arafa, M. Chouaibi, S. Sadok, and A. El Abed, “The influence of season on the gonad index and biochemical composition of the sea urchin Paracentrotus lividus from the Golf of Tunis,” The Scientific World Journal, vol. 2012, Article ID 815935, 8 pages, 2012. View at Publisher · View at Google Scholar
  104. G. Van Biesen and C. C. Parrish, “Long-chain monounsaturated fatty acids as biomarkers for the dispersal of organic waste from a fish enclosure,” Marine Environmental Research, vol. 60, no. 3, pp. 375–388, 2005. View at Publisher · View at Google Scholar · View at Scopus
  105. T. Kreibich, W. Hagen, and R. Saborowski, “Food utilization of two pelagic crustaceans in the Greenland Sea: Meganyctiphanes norvegica (Euphausiacea) and Hymenodora glacialis (Decapoda, Caridea),” Marine Ecology Progress Series, vol. 413, pp. 105–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Villanueva, J. O. Grimalt, E. Cortijo, L. Vidal, and L. Labeyrie, “A biomarker approach to the organic matter deposited in the North Atlantic during the last climatic cycle,” Geochimica et Cosmochimica Acta, vol. 61, no. 21, pp. 4633–4646, 1997. View at Scopus
  107. M. A. Guzman-Vega and M. R. Mello, “Origin of oil in the Sureste Basin, Mexico,” AAPG Bulletin, vol. 83, no. 7, pp. 1068–1094, 1999. View at Scopus
  108. J. K. Volkman, “Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways,” Organic Geochemistry, vol. 36, no. 2, pp. 139–159, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. E. D. Hudson, C. C. Parrish, and R. J. Helleur, “Biogeochemistry of sterols in plankton, settling particles and recent sediments in a cold ocean ecosystem (Trinity Bay, Newfoundland),” Marine Chemistry, vol. 76, no. 4, pp. 253–270, 2001. View at Publisher · View at Google Scholar · View at Scopus
  110. C. C. Sheridan, C. Lee, S. G. Wakeham, and J. K. B. Bishop, “Suspended particle organic composition and cycling in surface and midwaters of the equatorial Pacific Ocean,” Deep-Sea Research I, vol. 49, no. 11, pp. 1983–2008, 2002. View at Publisher · View at Google Scholar · View at Scopus
  111. J. Xue, C. Lee, S. G. Wakeham, and R. A. Armstrong, “Using principal components analysis (PCA) with cluster analysis to study the organic geochemistry of sinking particles in the ocean,” Organic Geochemistry, vol. 42, no. 4, pp. 356–367, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. C. J. Stevens, D. Deibel, and C. C. Parrish, “Copepod omnivory in the North Water Polynya (Baffin Bay) during autumn: spatial patterns in lipid composition,” Deep-Sea Research I, vol. 51, no. 11, pp. 1637–1658, 2004. View at Publisher · View at Google Scholar · View at Scopus
  113. L. A. Copeman, C. C. Parrish, R. S. Gregory, R. E. Jamieson, J. Wells, and M. J. Whiticar, “Fatty acid biomarkers in coldwater eelgrass meadows: elevated terrestrial input to the food web of age-0 Atlantic cod Gadus morhua,” Marine Ecology Progress Series, vol. 386, pp. 237–251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. C. C. Parrish, V. M. French, and M. J. Whiticar, “Lipid class and fatty acid composition of copepods (Calanus finmarchicus, C. glacialis, Pseudocalanus sp., Tisbe furcata, and Nitokra lacustris) fed various combinations of autotrophic and heterotrophic protists,” Journal of Plankton Research, vol. 34, pp. 356–375, 2012.
  115. L. L. Loseto, G. A. Stern, T. L. Connelly et al., “Summer diet of beluga whales inferred by fatty acid analysis of the eastern Beaufort Sea food web,” Journal of Experimental Marine Biology and Ecology, vol. 374, no. 1, pp. 12–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. G. Stowasser, D. W. Pond, and M. A. Collins, “Using fatty acid analysis to elucidate the feeding habits of Southern Ocean mesopelagic fish,” Marine Biology, vol. 156, no. 11, pp. 2289–2302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. E. L. Allan, S. T. Ambrose, N. B. Richoux, and P. W. Froneman, “Determining spatial changes in the diet of nearshore suspension-feeders along the South African coastline: stable isotope and fatty acid signatures,” Estuarine, Coastal and Shelf Science, vol. 87, no. 3, pp. 463–471, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. M. A. Hurtado, I. S. Racotta, F. Arcos et al., “Seasonal variations of biochemical, pigment, fatty acid, and sterol compositions in female Crassostrea corteziensis oysters in relation to the reproductive cycle,” Comparative Biochemistry and Physiology B, vol. 163, pp. 172–183, 2012.
  119. J. R. Kelly, R. E. Scheibling, S. J. Iverson, and P. Gagnon, “Fatty acid profiles in the gonads of the sea urchin Strongylocentrotus droebachiensis on natural algal diets,” Marine Ecology Progress Series, vol. 373, pp. 1–9, 2008.
  120. E. J. Cook, R. Shucksmith, H. Orr, G. V. Ashton, and J. Berge, “Fatty acid composition as a dietary indicator of the invasive caprellid, Caprella mutica (Crustacea: Amphipoda),” Marine Biology, vol. 157, no. 1, pp. 19–27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. L. A. Copeman, C. C. Parrish, J. A. Brown, and M. Harel, “Effects of docosahexaenoic, eicosapentaenoic, and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail flounder (Limanda ferruginea): a live food enrichment experiment,” Aquaculture, vol. 210, no. 1–4, pp. 285–304, 2002. View at Publisher · View at Google Scholar · View at Scopus
  122. S. M. Budge, M. J. Wooller, A. M. Springer, S. J. Iverson, C. P. McRoy, and G. J. Divoky, “Tracing carbon flow in an arctic marine food web using fatty acid-stable isotope analysis,” Oecologia, vol. 157, no. 1, pp. 117–129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  123. L. Carreón-Palau, C. C. Parrish, J. A. del Angel-Rodríguez, H. Pérez-España, and S. Aguiñiga-García, “Revealing organic carbon sources fueling a coral reef food web in the Gulf of Mexico using stable isotopes and fatty acids,” Limnology and Oceanography, vol. 58, no. 2, pp. 593–612, 2013.
  124. S. Sigurgisladottir, S. P. Lall, C. C. Parrish, and R. G. Ackman, “Cholestane as a digestibility marker in the absorption of polyunsaturated fatty acid ethyl esters in Atlantic salmon,” Lipids, vol. 27, no. 6, pp. 418–424, 1992. View at Publisher · View at Google Scholar · View at Scopus
  125. J. N. C. Whyte, W. C. Clarke, N. G. Ginther, and J. O. T. Jensen, “Biochemical changes during embryogenesis of the Pacific halibut, Hippoglossus stenolepis (Schmidt),” Aquaculture and Fisheries Management, vol. 24, pp. 193–201, 1993.