About this Journal Submit a Manuscript Table of Contents
ISRN Oncology
Volume 2012 (2012), Article ID 139268, 19 pages
http://dx.doi.org/10.5402/2012/139268
Review Article

General Aspects of Colorectal Cancer

Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avenida Diagonal 643, Catalunya, 08028 Barcelona, Spain

Received 23 September 2012; Accepted 11 October 2012

Academic Editors: H. Al-Ali, N. Fujimoto, L. Mutti, and R. Nahta

Copyright © 2012 Josep J. Centelles. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Howlader, A. M. Noone, M. Krapcho et al., Eds., SEER Cancer Statistics Review, 1975–2009 (Vintage 2009 Populations), National Cancer Institute, Bethesda, Md, USA, 2012, http://seer.cancer.gov/csr/1975_2009_pops09/.
  2. U. Güller, A. Zettl, M. Worni et al., “Molecular investigation of lymph nodes in colon cancer patients using one-step nucleic acid amplification (OSNA). A new road to better staging?” Cancer. In press. View at Publisher · View at Google Scholar
  3. L. Bomme, S. Heim, G. Bardi et al., “Allelic imbalance and cytogenetic deletion of 1p in colorectal adenomas: a target region identified between DIS199 and DIS234,” Genes Chromosomes Cancer, vol. 21, pp. 185–194, 1998.
  4. L. Bomme, R. A. Lothe, G. Bardi, C. Fenger, O. Kronborg, and S. Heim, “Assessments of clonal composition of colorectal adenomas by fish analysis of chromosomes 1, 7, 13 and 20,” International Journal of Cancer, vol. 92, no. 6, pp. 816–823, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Thorsteinsson, L. T. Kirkeby, R. Hansen et al., “Gene expression profiles in stages II and III colon cancers: application of a 128-gene signature,” International Journal of Colorectal Disease. In press.
  6. M. R. Weiser, M. Gönen, J. F. Chou, M. W. Kattan, and D. Schrag, “Predicting survival after curative colectomy for cancer: individualizing colon cancer staging,” Journal of Clinical Oncology, vol. 29, no. 36, pp. 4796–4802, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Ried, R. Knutzen, R. Steinbeck et al., “Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors,” Genes Chromosomes and Cancer, vol. 15, no. 4, pp. 234–245, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. C. O. Nordling, “A new theory on the cancer-inducing mechanism,” British Journal of Cancer, vol. 7, no. 1, pp. 68–72, 1953.
  9. A. G. Knudson Jr., “Mutation and cancer: statistical study of retinoblastoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 68, no. 4, pp. 820–823, 1971. View at Scopus
  10. F. R. De Gruijl, H. J. Van Kranen, and L. H. F. Mullenders, “UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer,” Journal of Photochemistry and Photobiology B, vol. 63, no. 1–3, pp. 19–27, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Hermsen, C. Postma, J. Baak et al., “Colorectal adenoma to carcinoma progression follows multiple pathways of chromosomal instability,” Gastroenterology, vol. 123, no. 4, pp. 1109–1119, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. M. L. Fero, E. Randel, K. E. Gurley, J. M. Roberts, and C. J. Kemp, “The murine gene p27(Kip 1) is haplo-insufficient for tumour suppression,” Nature, vol. 396, no. 6707, pp. 177–180, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Zhu, J. Hu, Y. Hu, and W. Liu, “Targeting DNA repair pathways: a novel approach to reduce cancer therapeutic resistance,” Cancer Treatment Reviews, vol. 35, no. 7, pp. 590–596, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Helle, “Germ cell DNA-repair systems—possible tools in cancer research?” Cancer Gene Therapy, vol. 19, no. 4, pp. 299–302, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Horvat and B. Stabuc, “Microsatellite instability in colorectal cancer,” Radiology and Oncology, vol. 45, no. 2, pp. 75–81, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. D. J. Ahnen, “The American College of gastroenterology emily couric lecture the adenoma-carcinoma sequence revisited: has the era of genetic tailoring finally arrived,” American Journal of Gastroenterology, vol. 106, no. 2, pp. 190–198, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. N. McGranahan, R. A. Burrell, D. Endesfelder, M. R. Novelli, and C. Swanton, “Cancer chromosomal instability: therapeutic and diagnostic challenges,” EMBO Reports, vol. 13, no. 6, pp. 528–538, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Fodde, R. Smits, and H. Clevers, “APC, signal transduction and genetic instability in colorectal cancer,” Nature Reviews Cancer, vol. 1, no. 1, pp. 55–67, 2001. View at Scopus
  20. K. B. Kaplan, A. A. Burds, J. R. Swedlow, S. S. Bekir, P. K. Sorger, and I. S. Näthke, “A role for the Adenomatous Polyposis Coli protein in chromosome segregation,” Nature Cell Biology, vol. 3, no. 4, pp. 429–432, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. D. P. Cahill, C. Lengauer, J. Yu et al., “Mutations of mitotic checkpoint genes in human cancers,” Nature, vol. 392, no. 6673, pp. 300–303, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Fodde, J. Kuipers, C. Rosenberg et al., “Mutations in the APC tumour suppressor gene cause chromosomal instability,” Nature Cell Biology, vol. 3, no. 4, pp. 433–438, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. R. N. Jones, “McClintock's controlling elements: the full story,” Cytogenetic and Genome Research, vol. 109, no. 1–3, pp. 90–103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. S. J. E. Suijkerbuijk and G. J. P. L. Kops, “Preventing aneuploidy: the contribution of mitotic checkpoint proteins,” Biochimica et Biophysica Acta, vol. 1786, no. 1, pp. 24–31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Fang, H. Yu, and M. W. Kirschner, “The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation,” Genes and Development, vol. 12, no. 12, pp. 1871–1883, 1998. View at Scopus
  26. L. H. Hwang, L. F. Lau, D. L. Smith et al., “Budding yeast Cdc20: a target of the spindle checkpoint,” Science, vol. 279, no. 5353, pp. 1041–1044, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. S. H. Kim, D. P. Lin, S. Matsumoto, A. Kitazono, and T. Matsumoto, “Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint,” Science, vol. 279, no. 5353, pp. 1045–1047, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Kitamura, H. Maekawa, and C. Shimoda, “Fission yeast ste9, a homolog of Hct1/Cdh1 and fizzy-related, is a novel negative regulator of cell cycle progression during G1-phase,” Molecular Biology of the Cell, vol. 9, no. 5, pp. 1065–1080, 1998. View at Scopus
  29. R. Fraschini, A. Beretta, L. Sironi, A. Musacchio, G. Lucchini, and S. Piatti, “Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require intact kinetochores,” The EMBO Journal, vol. 20, no. 23, pp. 6648–6659, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. D. N. Millband and K. G. Hardwick, “Fission yeast Mad3p is required for Mad2p to inhibit the anaphase-promoting complex and localizes to kinetochores in a Bub1p-, Bub3p-, and Mph1p-dependent manner,” Molecular and Cellular Biology, vol. 22, no. 8, pp. 2728–2742, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Poddar, P. T. Stukenberg, and D. J. Burke, “Two complexes of spindle checkpoint proteins containing Cdc20 and Mad2 assemble during mitosis independently of the kinetochore in Saccharomyces cerevisiae,” Eukaryotic Cell, vol. 4, no. 5, pp. 867–878, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Wu, Z. Lan, W. Li et al., “p55CDC/hCDC20 is associated with BUBR1 and may be a downstream target of the spindle checkpoint kinase,” Oncogene, vol. 19, no. 40, pp. 4557–4562, 2000. View at Scopus
  33. R. W. King, J. M. Peters, S. Tugendreich, M. Rolfe, P. Hieter, and M. W. Kirschner, “A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B,” Cell, vol. 81, no. 2, pp. 279–288, 1995. View at Scopus
  34. V. Sudakin, D. Ganoth, A. Dahan et al., “The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis,” Molecular Biology of the Cell, vol. 6, no. 2, pp. 185–198, 1995. View at Scopus
  35. M. S. Pino and D. C. Chung, “The chromosomal instability pathway in colon cancer,” Gastroenterology, vol. 138, no. 6, pp. 2059–2072, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. Z. Tang, H. Shu, D. Oncel, S. Chen, and H. Yu, “Phosphorylation of Cdc20 by Bub1 provides a catalytic mechanism for APC/C inhibition by the spindle checkpoint,” Molecular Cell, vol. 16, no. 3, pp. 387–397, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. S. S. Taylor, E. Ha, and F. McKeon, “The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase,” Journal of Cell Biology, vol. 142, no. 1, pp. 1–11, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Sage and A. F. Straight, “RB's original CIN?” Genes and Development, vol. 24, no. 13, pp. 1329–1333, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Michor, Y. Iwasa, H. Rajagopalan, C. Lengauer, and M. A. Nowak, “Linear model of colon cancer initiation,” Cell Cycle, vol. 3, no. 3, pp. 358–362, 2004. View at Scopus
  40. N. L. Komarova, C. Lengauer, B. Vogelstein, and M. A. Nowak, “Dynamics of genetic instability in sporadic and familial colorectal cancer,” Cancer Biology and Therapy, vol. 1, no. 6, pp. 685–692, 2002. View at Scopus
  41. L. Bomme, G. Bardi, N. Pandis, C. Fenger, O. Kronborg, and S. Heim, “Chromosome abnormalities in colorectal adenomas: two cytogenetic subgroups characterized by deletion of 1p and numerical aberrations,” Human Pathology, vol. 27, no. 11, pp. 1192–1197, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. W. Giaretti, “A model of DNA aneuploidization and evolution in colorectal cancer,” Laboratory Investigation, vol. 71, no. 6, pp. 904–910, 1994. View at Scopus
  43. A. Di Vinci, E. Infusini, C. Peveri, M. Risio, F. P. Rossini, and W. Giaretti, “Deletions at chromosome 1p by fluorescence in situ hybridization are an early event in human colorectal tumorigenesis,” Gastroenterology, vol. 111, no. 1, pp. 102–107, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Herbergs, A. H. N. Hopman, A. P. De Bruïne, F. C. S. Ramaekers, and J.-W. Arends, “In situ hybridization and flow cytometric analysis of colorectal tumours suggests two routes of tumourigenesis characterized by gain of chromosome 7 or loss of chromosomes 17 and 18,” Journal of Pathology, vol. 179, no. 3, pp. 243–247, 1996. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Ried, R. Knutzen, R. Steinbeck et al., “Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors,” Genes Chromosomes and Cancer, vol. 15, no. 4, pp. 234–245, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Mitelman, B. Johansson, and F. Mertens, Eds., Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer, 2012, http://cgap.nci.nih.gov/Chromosomes/Mitelman.
  47. P. Castagnola and W. Giaretti, “Mutant KRAS, chromosomal instability and prognosis in colorectal cancer,” Biochimica et Biophysica Acta, vol. 1756, no. 2, pp. 115–125, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. I. M. Shih, W. Zhou, S. N. Goodman, C. Lengauer, K. W. Kinzler, and B. Vogelstein, “Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis,” Cancer Research, vol. 61, no. 3, pp. 818–822, 2001. View at Scopus
  49. B. Vogelstein, E. R. Fearon, S. R. Hamilton et al., “Genetic alterations during colorectal-tumor development,” The New England Journal of Medicine, vol. 319, no. 9, pp. 525–532, 1988. View at Scopus
  50. H. Rajagopalan and C. Lengauer, “CIN-ful cancers,” Cancer Chemotherapy and Pharmacology, vol. 54, supplement 1, pp. S65–S68, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. E. Hernando, Z. Nahlé, G. Juan et al., “Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control,” Nature, vol. 430, no. 7001, pp. 797–802, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. O. Vafa, M. Wade, S. Kern et al., “c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability,” Molecular Cell, vol. 9, no. 5, pp. 1031–1044, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. J. C. Lung, J. S. Chu, J. C. Yu et al., “Aberrant expression of cell-cycle regulator cyclin DI in breast cancer is related to chromosomal genomic instability,” Genes Chromosomes and Cancer, vol. 34, no. 3, pp. 276–284, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. C. H. Spruck, K. A. Won, and S. I. Reed, “Deregulated cyclin E induces chromosome instability,” Nature, vol. 401, no. 6750, pp. 297–300, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Bomme, S. Heim, G. Bardi et al., “Allelic imbalance and cytogenetic deletion of 1p in colorectal adenomas: a target region identified between D1S199 and D1S234,” Genes Chromosomes and Cancer, vol. 21, no. 3, pp. 185–194, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Bomme, R. A. Lothe, G. Bardi, C. Fenger, O. Kronborg, and S. Heim, “Assessments of clonal composition of colorectal adenomas by fish analysis of chromosomes 1, 7, 13 and 20,” International Journal of Cancer, vol. 92, no. 6, pp. 816–823, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. A. De La Chapelle and H. Hampel, “Clinical relevance of microsatellite instability in colorectal cancer,” Journal of Clinical Oncology, vol. 28, no. 20, pp. 3380–3387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. B. Iacopetta, F. Grieu, and B. Amanuel, “Microsatellite instability in colorectal cancer,” Asia-Pacific Journal of Clinical Oncology, vol. 6, no. 4, pp. 260–269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. C. R. Boland, S. N. Thibodeau, S. R. Hamilton et al., “A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer,” Cancer Research, vol. 58, no. 22, pp. 5248–5257, 1998. View at Scopus
  60. X. Wu, Y. Xu, W. Chai, and C. Her, “Causal link between microsatellite instability and hMRE11 dysfunction in human cancers,” Molecular Cancer Research, vol. 9, no. 11, pp. 1443–1448, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. N. Suraweera, A. Duval, M. Reperant et al., “Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR,” Gastroenterology, vol. 123, no. 6, pp. 1804–1811, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Kloor, S. Michel, and M. Von Knebel Doeberitz, “Immune evasion of microsatellite unstable colorectal cancers,” International Journal of Cancer, vol. 127, no. 5, pp. 1001–1010, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Søreide, B. S. Nedrebø, J. C. Knapp, T. B. Glomsaker, J. A. Søreide, and H. Kørner, “Evolving molecular classification by genomic and proteomic biomarkers in colorectal cancer: potential implications for the surgical oncologist,” Surgical Oncology, vol. 18, no. 1, pp. 31–50, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Ogino, A. T. Chan, C. S. Fuchs, and E. Giovannucci, “Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field,” Gut, vol. 60, no. 3, pp. 397–411, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. J. J. L. Wong, N. J. Hawkins, and R. L. Ward, “Colorectal cancer: a model for epigenetic tumorigenesis,” Gut, vol. 56, no. 1, pp. 140–148, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. S. B. Baylin and J. E. Ohm, “Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction?” Nature Reviews Cancer, vol. 6, no. 2, pp. 107–116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. T. Tanaka, M. Arai, S. Wu et al., “Epigenetic silencing of microRNA-373 plays an important role in regulating cell proliferation in colon cancer,” Oncology Reports, vol. 26, no. 5, pp. 1329–1335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. T. Karius, M. Schnekenburger, M. Dicato, and M. Diederich, “MicroRNAs in cancer management and their modulation by dietary agents,” Biochemical Pharmacology, vol. 83, no. 12, pp. 1591–1601, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. H. Hermeking, “The miR-34 family in cancer and apoptosis,” Cell Death and Differentiation, vol. 17, no. 2, pp. 193–199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. P. Lopez-Serra and M. Esteller, “DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer,” Oncogene, vol. 31, no. 13, pp. 1609–1622, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. M. J. Bueno and M. Malumbres, “MicroRNAs and the cell cycle,” Biochimica et Biophysica Acta, vol. 1812, no. 5, pp. 592–601, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. T. D. King, W. Zhang, M. J. Suto, and Y. Li, “Frizzled7 as an emerging target for cancer therapy,” Cellular Signalling, vol. 24, no. 4, pp. 846–851, 2012. View at Publisher · View at Google Scholar · View at Scopus
  73. U. Asghar and T. Meyer, “Are there opportunities for chemotherapy in the treatment of hepatocellular cancer?” Journal of Hepatology, vol. 56, no. 3, pp. 686–695, 2012. View at Publisher · View at Google Scholar · View at Scopus
  74. F. Caraci, G. Battaglia, V. Bruno et al., “TGF-β1 pathway as a new target for neuroprotection in alzheimer's disease,” CNS Neuroscience and Therapeutics, vol. 17, no. 4, pp. 237–249, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. C. Yang, R. R. Iyer, A. C. H. Yu et al., “β-catenin signaling initiates the activation of astrocytes and its dysregulation contributes to the pathogenesis of astrocytomas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 18, pp. 6963–6968, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. J. G. Herman, A. Umar, K. Polyak et al., “Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 12, pp. 6870–6875, 1998. View at Publisher · View at Google Scholar · View at Scopus
  77. X. Bessa, B. Ballesté, M. Andreu et al., “A prospective, multicenter, population-based study of BRAF mutational analysis for Lynch syndrome screening,” Clinical Gastroenterology and Hepatology, vol. 6, no. 2, pp. 206–214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Middeldorp, M. Van Puijenbroek, M. Nielsen et al., “High frequency of copy-neutral LOH in MUTYH-associated polyposis carcinomas,” Journal of Pathology, vol. 216, no. 1, pp. 25–31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. G. Poulogiannis, I. M. Frayling, and M. J. Arends, “DNA mismatch repair deficiency in sporadic colorectal cancer and Lynch syndrome,” Histopathology, vol. 56, no. 2, pp. 167–179, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. H. T. Lynch, P. M. Lynch, S. J. Lanspa, C. L. Snyder, J. F. Lynch, and C. R. Boland, “Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications,” Clinical Genetics, vol. 76, no. 1, pp. 1–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. R. Kleinerman, J. Marino, and E. Loucas, “Muir-torre syndrome/Turcot syndrome overlap? A patient with sebaceous carcinoma, colon cancer, and a malignant astrocytoma,” Dermatology Online Journal, vol. 18, no. 5, 2012. View at Scopus
  82. D. Kacerovska, K. Cerna, P. Martinek et al., “MSH6 mutation in a family affected by muir-torre syndrome,” American Journal of Dermatopathology, vol. 34, no. 6, pp. 648–652, 2012. View at Publisher · View at Google Scholar · View at Scopus
  83. H. J. Chung, S. T. Oh, J. G. Kim, and W.-K. Kang, “Turcot syndrome: a case report in an unsuspected setting,” Journal of Gastrointestinal Surgery, vol. 16, no. 2, pp. 411–414, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. A. C. Rogers, A. M. Hanly, D. Collins, A. W. Baird, and D. C. Winter, “Review article: loss of the calcium-sensing receptor in colonic epithelium is a key event in the pathogenesis of colon cancer,” Clinical Colorectal Cancer, vol. 11, no. 1, pp. 24–30, 2012. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. Lee, H. Kim, W. Kim, J.-H. Yoon, S. H. Jeong, and Y. Jung, “Colon-specific delivery of celecoxib is a potential strategy to improve toxicological and pharmacological properties of the selective Cox-2 inhibitor: implication in treatment of familiar adenomatous polyposis,” Journal of Drug Targeting, vol. 20, no. 6, pp. 524–534, 2012. View at Publisher · View at Google Scholar · View at Scopus
  86. J. De Tomás, Y. Al Lal, M. D. Pérez Díaz, and M. Sanz, “Chronic polyps in the stomach and jejunum in a patient with familial adenomatous polyposis,” Gastroenterologia y Hepatologia, vol. 34, no. 10, pp. 683–685, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. F. Guilherme Campos, “Familial adenomatous polyposis. Review of clinical features, surgical treatment and current management of extracolonic manifestations,” GED, vol. 25, no. 2, pp. 42–57, 2006. View at Scopus
  88. A. Castillejo, A. B. Sanchez-Heras, R. Jover, et al., “Recurrent testicular germ cell tumors in a family with MYH-Associated polyposis,” Journal of Clinical Oncology, vol. 30, no. 23, pp. e216–e217, 2012. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Church, B. Heald, C. Burke, and M. Kalady, “Understanding MYH-associated neoplasia,” Diseases of the Colon and Rectum, vol. 55, no. 3, pp. 359–362, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Ito, S. Minamiguchi, Y. Mikami et al., “Peutz-Jeghers syndrome associated atypical mucinous proliferation of the uterine cervix. A case of minimal deviation adenocarcinoma (“adenoma malignum”) in situ,” Pathology Research and Practice, vol. 208, no. 108, pp. 623–627, 2012.
  91. E. Saad, O. AlHarbi, and S. AlOsaimi, “A solitary hamartomatous polyp of the ileum causing adult intussusception: a case report,” Kuwait Medical Journal, vol. 44, no. 3, pp. 235–238, 2012.
  92. F. Schwenter, F. Ratjen, T. Berk et al., “Juvenile polyposis syndrome, SMAD4 mutations, and hereditary hemorrhagic telangiectasia,” Journal of Pediatric Gastroenterology and Nutrition, vol. 47, pp. 795–804, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. K. W. Jasperson, “Genetic testing by cancer site: colon (polyposis syndromes),” Cancer Journal, vol. 18, no. 4, pp. 328–333, 2012. View at Publisher · View at Google Scholar · View at Scopus
  94. R. Kaddu, E. V. Bawle, V. Tolia, and W. W. Tunnessen, “Bannayan-ruvalcaba-riley syndrome,” Archives of Pediatrics and Adolescent Medicine, vol. 155, no. 1, pp. 87–88, 2001. View at Scopus
  95. I. R. Schreibman, M. Baker, C. Amos, and T. J. McGarrity, “The hamartomatous polyposis syndromes: a clinical and molecular review,” American Journal of Gastroenterology, vol. 100, no. 2, pp. 476–490, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. C. Girard, A. Debu, D. Bessis, V. Blatière, O. Dereure, and B. Guillot, “Treatment of Gorlin syndrome (nevoid basal cell carcinoma syndrome) with methylaminolevulinate photodynamic therapy in seven patients, including two children. Interest of tumescent anesthesia for pain control in children,” Journal of the European Academy of Dermatology and Venereology. In press.
  97. V. Huguier, E. Wierzbicka-Hainaut, J. Fray, G. Guillet, and G. Dagrégorio, “Gorlin syndrome: photodynamic therapy, as a useful adjunct to surgery,” Annales de Chirurgie Plastique et Esthetique, vol. 57, no. 2, pp. 173–176, 2012. View at Publisher · View at Google Scholar · View at Scopus
  98. S. Shibamoto, K. Higano, R. Takada, F. Ito, M. Takeichi, and S. Takada, “Cytoskeletal reorganization by soluble Wnt-3a protein signalling,” Genes to Cells, vol. 3, no. 10, pp. 659–670, 1998. View at Publisher · View at Google Scholar · View at Scopus
  99. K. M. Cadigan and R. Nusse, “Wnt signaling: a common theme in animal development,” Genes and Development, vol. 11, no. 24, pp. 3286–3305, 1997. View at Scopus
  100. K. Willert, J. D. Brown, E. Danenberg et al., “Wnt proteins are lipid-modified and can act as stem cell growth factors,” Nature, vol. 423, no. 6938, pp. 448–452, 2003. View at Publisher · View at Google Scholar · View at Scopus
  101. Y. K. Xu and R. Nusse, “The frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases,” Current Biology, vol. 8, no. 12, pp. R405–R406, 1998. View at Scopus
  102. P. Bhanot, M. Brink, C. H. Samos et al., “A new member of the frizzled family from Drosophila functions as a wingless receptor,” Nature, vol. 382, no. 6588, pp. 225–231, 1996. View at Publisher · View at Google Scholar · View at Scopus
  103. J. Mao, J. Wang, B. Liu et al., “Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway,” Molecular Cell, vol. 7, no. 4, pp. 801–809, 2001. View at Publisher · View at Google Scholar · View at Scopus
  104. R. Habas, “Canonical Wnt signalling: an unexpected new player,” Developmental Cell, vol. 11, no. 2, pp. 138–139, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. R. L. Daugherty and C. J. Gottardi, “Phospho-regulation of β-catenin adhesion and signaling functions,” Physiology, vol. 22, no. 5, pp. 303–309, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. D. V. F. Tauriello, I. Jordens, K. Kirchner, et al., “Wnt/β-catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 14, pp. E812–E820, 2012. View at Publisher · View at Google Scholar · View at Scopus
  107. K. R. Holloway, T. N. Calhoun, M. Saxena et al., “SIRT1 regulates Dishevelled proteins and promotes transient and constitutive Wnt signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 20, pp. 9216–9221, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. K. Nosho, K. Shima, N. Irahara et al., “SIRT1 histone deacetylase expression is associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer,” Modern Pathology, vol. 22, no. 7, pp. 922–932, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. L. B. Luna-Ulloa, J. G. Hernández-Maqueda, M. C. Castañeda-Patlán, and M. Robles-Flores, “Protein kinase C in Wnt signaling: implications in cancer initiation and progression,” IUBMB Life, vol. 63, no. 10, pp. 873–879, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. L.-J. Niu, R.-X. Xu, P. Zhang, M.-X. Du, and X.-D. Jiang, “Suppression of Frizzled-2-mediated Wnt/Ca2+ signaling significantly attenuates intracellular calcium accumulation in vitro and in a rat model of traumatic brain injury,” Neuroscience, vol. 213, pp. 19–28, 2012. View at Publisher · View at Google Scholar · View at Scopus
  111. H. Peradziryi, N. S. Tolwinski, and A. Borchers, “The many roles of PTK7: a versatile regulator of cell-cell communication,” Archives of Biochemistry and Biophysics, vol. 524, no. 1, pp. 71–76, 2012. View at Publisher · View at Google Scholar · View at Scopus
  112. C. M. Croce, “Oncogenes and cancer,” The New England Journal of Medicine, vol. 358, no. 5, pp. 502–511, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. G. Maurer, B. Tarkowski, and M. Baccarini, “Raf kinases in cancer-roles and therapeutic opportunities,” Oncogene, vol. 30, pp. 3477–3488, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. R. Blum and Y. Kloog, “Tailoring Ras-pathway—inhibitor combinations for cancer therapy,” Drug Resistance Updates, vol. 8, no. 6, pp. 369–380, 2005. View at Publisher · View at Google Scholar · View at Scopus
  115. F. V. N. Din, A. Valanciute, V. P. Houde et al., “Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells,” Gastroenterology, vol. 142, no. 7, pp. 1504–1515.e3, 2012. View at Publisher · View at Google Scholar · View at Scopus
  116. Y. J. Zhang, Y. Duan, and X. F. S. Zheng, “Targeting the mTOR kinase domain: the second generation of mTOR inhibitors,” Drug Discovery Today, vol. 16, no. 7-8, pp. 325–331, 2011. View at Publisher · View at Google Scholar · View at Scopus
  117. A. G. Tatosyan and O. A. Mizenina, “Kinases of the Src family: structure and functions,” Biochemistry, vol. 65, no. 1, pp. 49–58, 2000. View at Scopus
  118. K. Suzuki and H. Matsubara, “Recent advances in p53 research and cancer treatment,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 978312, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  119. G. Chatel, C. Ganeff, N. Boussif et al., “Hedgehog signaling pathway is inactive in colorectal cancer cell lines,” International Journal of Cancer, vol. 121, no. 12, pp. 2622–2627, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. N. Chaudary, M. Pintilie, D. Hedley et al., “Hedgehog pathway signaling in cervical carcinoma and outcome after chemoradiation,” Cancer, vol. 118, no. 12, pp. 3105–3115, 2012. View at Publisher · View at Google Scholar · View at Scopus
  121. W.-S. Lee, J.-H. Baek, J. M. Kang, S. Choi, and K. A. Kwon, “The outcome after stent placement or surgery as the initial treatment for obstructive primary tumor in patients with stage IV colon cancer,” American Journal of Surgery, vol. 203, no. 6, pp. 715–719, 2012. View at Publisher · View at Google Scholar · View at Scopus
  122. M. D. Garrett and I. Collins, “Anticancer therapy with checkpoint inhibitors: what, where and when?” Trends in Pharmacological Sciences, vol. 32, no. 5, pp. 308–316, 2011. View at Publisher · View at Google Scholar · View at Scopus
  123. M. Cascante, J. J. Centelles, R. L. Veech, W. N. P. Lee, and L. G. Boros, “Role of thiamin (vitamin B-1) and transketolase in tumor cell proliferation,” Nutrition and Cancer, vol. 36, no. 2, pp. 150–154, 2000. View at Scopus
  124. B. Comín-Anduix, J. Boren, S. Martinez et al., “The effect of thiamine supplementation on tumour roliferation: a metabolic control analysis study,” European Journal of Biochemistry, vol. 268, no. 15, pp. 4177–4182, 2001. View at Publisher · View at Google Scholar · View at Scopus
  125. J. Boren, M. Cascante, S. Marin et al., “Gleevec (STI571) influences metabolic enzyme activities and glucose carbon flow toward nucleic acid and fatty acid synthesis in myeloid tumor cells,” The Journal of Biological Chemistry, vol. 276, no. 41, pp. 37747–37753, 2001. View at Scopus
  126. J. Boren, A. R. Montoya, P. De Atauri et al., “Metabolic control analysis aimed at the ribose synthesis pathways of tumor cells: a new strategy for antitumor drug development,” Molecular Biology Reports, vol. 29, no. 1-2, pp. 7–12, 2002. View at Publisher · View at Google Scholar · View at Scopus
  127. A. Ramos-Montoya, W. N. P. Lee, S. Bassilian et al., “Pentose phosphate cycle oxidative and nonoxidative balance: a new vulnerable target for overcoming drug resistance in cancer,” International Journal of Cancer, vol. 119, no. 12, pp. 2733–2741, 2006. View at Publisher · View at Google Scholar · View at Scopus
  128. J. L. Torres, B. Varela, M. T. García et al., “Valorization of grape (Vitis vinifera) byproducts. Antioxidant and biological properties of polyphenolic fractions differing in procyanidin composition and flavonol content,” Journal of Agricultural and Food Chemistry, vol. 50, no. 26, pp. 7548–7555, 2002. View at Publisher · View at Google Scholar · View at Scopus
  129. M. Koopman, S. Venderbosch, I. D. Nagtegaal, J. H. van Krieken, and C. J. Punt, “A review on the use of molecular markers of cytotoxic therapy for colorectal cancer, what have we learned?” European Journal of Cancer, vol. 45, no. 11, pp. 1935–1949, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. A. Shehzad, F. Wahid, and Y. S. Lee, “Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials,” Archiv der Pharmazie, vol. 343, no. 9, pp. 489–499, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. I. A. Barbosa, N. G. Machado, A. J. Skildum, P. M. Scott, and P. J. Oliveira, “Mitochondrial remodeling in cancer metabolism and survival: potential for new therapies,” Biochimica et Biophysica Acta, vol. 1826, no. 1, pp. 238–254, 2012. View at Publisher · View at Google Scholar · View at Scopus
  132. M. R. Graaf, D. J. Richel, C. J. F. van Noorden, and H. J. Guchelaar, “Effects of statins and farnesyltransferase inhibitors on the development and progression of cancer,” Cancer Treatment Reviews, vol. 30, no. 7, pp. 609–641, 2004. View at Publisher · View at Google Scholar · View at Scopus
  133. J. L. Goldstein and M. S. Brown, “Regulation of the mevalonate pathway,” Nature, vol. 343, no. 6257, pp. 425–430, 1990. View at Publisher · View at Google Scholar · View at Scopus
  134. C. J. Chen, A. N. McCoy, J. Brahmer, and J. T. Handa, “Emerging treatments for choroidal metastases,” Survey of Ophthalmology, vol. 56, no. 6, pp. 511–521, 2011. View at Publisher · View at Google Scholar · View at Scopus
  135. F. Ciardiello and G. Tortora, “Drug therapy: EGFR antagonists in cancer treatment,” The New England Journal of Medicine, vol. 358, no. 11, pp. 1096–1174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. E. Van Cutsem, C. H. Köhne, E. Hitre et al., “Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer,” The New England Journal of Medicine, vol. 360, no. 14, pp. 1408–1417, 2009. View at Publisher · View at Google Scholar · View at Scopus
  137. J. Y. Douillard, S. Siena, J. Cassidy et al., “Randomized, Phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) Versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study,” Journal of Clinical Oncology, vol. 28, no. 31, pp. 4697–4705, 2010. View at Publisher · View at Google Scholar · View at Scopus
  138. L. B. Saltz, S. Clarke, E. Díaz-Rubio et al., “Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study,” Journal of Clinical Oncology, vol. 26, no. 12, pp. 2013–2019, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. P. F. Engstrom, J. P. Arnoletti, A. B. Benson et al., “Rectal cancer,” JNCCN, vol. 7, no. 8, pp. 838–881, 2009. View at Scopus
  140. R. S. Kerbel, “Tumor angiogenesis,” The New England Journal of Medicine, vol. 358, no. 19, pp. 2039–2049, 2008. View at Publisher · View at Google Scholar · View at Scopus
  141. C. Widakowich, G. De Castro, E. De Azambuja, P. Dinh, and A. Awada, “Review: side effects of approved molecular targeted therapies in solid cancers,” Oncologist, vol. 12, no. 12, pp. 1443–1455, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. A. A. Adjei, “Targeting multiple signal transduction pathways in lung cancer,” Clinical Lung Cancer, vol. 7, pp. S39–S44, 2005. View at Scopus
  143. J. L. Torres, C. Lozano, L. Julià et al., “Cysteinyl-flavan-3-ol conjugates from grape procyanidins. Antioxidant and antiproliferative properties,” Bioorganic and Medicinal Chemistry, vol. 10, no. 8, pp. 2497–2509, 2002. View at Publisher · View at Google Scholar · View at Scopus
  144. C. Matito, F. Mastorakou, J. J. Centelles, J. L. Torres Simón, and M. C. Serratosa, “Antiproliferative effect of antioxidant polyphenols from grape in murine Hepa-1c1c7,” European Journal of Nutrition, vol. 42, no. 1, pp. 43–49, 2003. View at Publisher · View at Google Scholar · View at Scopus
  145. D. Lizarraga, C. Lozano, J. J. Briedé et al., “The importance of polymerization and galloylation for the antiproliferative properties of procyanidin-rich natural extracts,” FEBS Journal, vol. 274, no. 18, pp. 4802–4811, 2007. View at Publisher · View at Google Scholar · View at Scopus
  146. D. Lizarraga, C. Lozano, S. Touriño, J. Centelles, J. L. Torres, and M. Cascante, “Polymerization and galloylation: two important aspects for antiproliferative propierties of procyanidin-rich natural extracts,” Electronic Journal of Environmental, Agricultural and Food Chemistry, vol. 7, no. 8, pp. 3343–3347, 2008. View at Scopus
  147. S. Touriño, D. Lizárraga, A. Carreras et al., “Antioxidant/prooxidant effects of bioactive polyphenolics,” Electronic Journal of Environmental, Agricultural and Food Chemistry, vol. 7, no. 8, pp. 3348–3352, 2008. View at Scopus
  148. D. Lizárraga, S. Touriño, F. J. Reyes-Zurita et al., “Witch Hazel (Hamamelis virginiana) fractions and the importance of gallate moieties—electron transfer capacities in their antitumoral properties,” Journal of Agricultural and Food Chemistry, vol. 56, no. 24, pp. 11675–11682, 2008. View at Publisher · View at Google Scholar · View at Scopus
  149. N. G. Amado, B. F. Fonseca, D. M. Cerqueira, V. M. Neto, and J. G. Abreu, “Flavonoids: potential Wnt/beta-catenin signaling modulators in cancer,” Life Sciences, 2011. View at Publisher · View at Google Scholar · View at Scopus
  150. M. E. Juan, I. Alfaras, and J. M. Planas, “Colorectal cancer chemoprevention by trans-resveratrol,” Pharmacological Research, vol. 65, no. 6, pp. 584–591, 2012. View at Publisher · View at Google Scholar · View at Scopus
  151. M. K. Shanmugam, A. H. Nguyen, A. P. Kumar, B. K. H. Tan, and G. Sethi, “Targeted inhibition of tumor proliferation, survival, and metastasis by pentacyclic triterpenoids: potential role in prevention and therapy of cancer,” Cancer Letters, vol. 320, no. 2, pp. 158–170, 2012. View at Publisher · View at Google Scholar · View at Scopus