About this Journal Submit a Manuscript Table of Contents
ISRN Oncology
Volume 2012 (2012), Article ID 349351, 9 pages
http://dx.doi.org/10.5402/2012/349351
Review Article

The Potential Benefit by Application of Kinetic Analysis of PET in the Clinical Oncology

Nuclear Medicine Department, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany

Received 4 November 2012; Accepted 25 November 2012

Academic Editors: S. Honoré and T. Yokoe

Copyright © 2012 Mustafa Takesh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. L. Macheda, S. Rogers, and J. D. Best, “Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer,” Journal of Cellular Physiology, vol. 202, no. 3, pp. 654–662, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Plathow and W. A. Weber, “Tumor cell metabolism imaging,” Journal of Nuclear Medicine, vol. 49, supplement 6, pp. 43S–63S, 2008. View at Publisher · View at Google Scholar
  3. E. Sutinen, M. Nurmi, A. Roivainen et al., “Kinetics of [11C]choline uptake in prostate cancer: a PET stydy,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 31, no. 3, pp. 317–324, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Glunde and Z. M. Bhujwalla, “Choline kinase alpha in cancer prognosis and treatment,” Lancet Oncology, vol. 8, no. 10, pp. 855–857, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Beheshti, W. Langsteger, and I. Fogelman, “Prostate cancer: role of SPECT and PET in imaging bone metastases,” Seminars in Nuclear Medicine, vol. 39, no. 6, pp. 396–407, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. J. Breeuwsma, J. Pruim, M. M. Jongen et al., “In vivo uptake of [11C]choline does not correlate with cell proliferation in human prostate cancer,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 32, no. 6, pp. 668–673, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. Q. H. Zheng, T. A. Gardner, S. Raikwar et al., “[11C]Choline as a PET biomarker for assessment of prostate cancer tumor models,” Bioorganic and Medicinal Chemistry, vol. 12, no. 11, pp. 2887–2893, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. L. G. Strauss, L. Pan, C. Cheng, U. Haberkorn, and A. Dimitrakopoulou-Strauss, “Shortened acquisition protocols for the quantitative assessment of the 2-tissue-compartment model using dynamic PET/CT18F-FDG studies,” Journal of Nuclear Medicine, vol. 52, no. 3, pp. 379–385, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Ohtake, N. Kosaka, T. Watanabe et al., “Noninvasive method to obtain input function for measuring tissue glucose utilization of thoracic and abdominal organs,” Journal of Nuclear Medicine, vol. 32, no. 7, pp. 1432–1438, 1991.
  10. C. Burger and A. Buck, “Requirements and implementation of a flexible kinetic modeling tool,” Journal of Nuclear Medicine, vol. 38, no. 11, pp. 1818–1823, 1997.
  11. O. C. Hutchinson, D. R. Collingridge, H. Barthel, P. M. Price, and E. O. Aboagye, “Pharmacokinetics of radiolabelled anticancer drugs for positron emission tomography,” Current Pharmaceutical Design, vol. 9, no. 11, pp. 917–929, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. A. M. Spence, M. Muzi, D. A. Mankoff et al., “18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter,” Journal of Nuclear Medicine, vol. 45, no. 10, pp. 1653–1659, 2004. View at Scopus
  13. N. Kawai, Y. Nishiyama, K. Miyake, T. Tamiya, and S. Nagao, “Evaluation of tumor FDG transport and metabolism in primary central nervous system lymphoma using [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) kinetic analysis,” Annals of Nuclear Medicine, vol. 19, no. 8, pp. 685–690, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Nishiyama, Y. Yamamoto, T. Monden et al., “Diagnostic value of kinetic analysis using dynamic FDG PET in immunocompetent patients with primary CNS lymphoma,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 1, pp. 78–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Schöder and H. W. D. Yeung, “Positron emission imaging of head and neck cancer, including thyroid carcinoma,” Seminars in Nuclear Medicine, vol. 34, no. 3, pp. 180–197, 2004. View at Publisher · View at Google Scholar
  16. B. Huang, P.-L. Khong, D. L.-W. Kwong, B. Hung, C.-S. Wong, and C.-Y. O. Wong, “Dynamic PET-CT studies for characterizing nasopharyngeal carcinoma metabolism: comparison of analytical methods,” Nuclear Medicine Communications, vol. 33, no. 2, pp. 191–197, 2012. View at Publisher · View at Google Scholar
  17. Y. Anzai, S. Minoshima, G. T. Wolf, and R. L. Wahl, “Head and neck cancer: detection of recurrence with three-dimensional principal components analysis at dynamic FDG PET,” Radiology, vol. 212, no. 1, pp. 285–290, 1999. View at Scopus
  18. B. Huang, T. Chan, W. K. S. Chan, and P.-L. Khong, “Nasopharyngeal carcinoma: investigation of intratumoral heterogeneity with FDG PET/CT,” American Journal of Roentgenology, vol. 199, no. 1, pp. 169–174, 2012. View at Publisher · View at Google Scholar
  19. H. O. Peitgen, H. Juergens, and D. Saupe, Chaos and Fractals, Springer, New York, NY, USA, 1st edition, 1992.
  20. M. Kleen, O. Habler, B. Zwissler, and K. Messmer, “Programs for assessment of spatial heterogeneity of regional organ blood flow,” Computer Methods and Programs in Biomedicine, vol. 55, no. 1, pp. 51–57, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Laverman, O. C. Boerman, F. H. M. Corstens, and W. J. G. Oyen, “Fluorinated amino acids for tumour imaging with positron emission tomography,” European Journal of Nuclear Medicine, vol. 29, no. 6, pp. 681–690, 2002.
  22. W. A. Weber, H. J. Wester, A. L. Grosu et al., “O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study,” European Journal of Nuclear Medicine, vol. 27, no. 5, pp. 542–549, 2000. View at Scopus
  23. A. Becherer, G. Karanikas, M. Szabó et al., “Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 30, no. 11, pp. 1561–1567, 2003.
  24. W. Chen, D. H. S. Silverman, S. Delaloye et al., “18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy,” Journal of Nuclear Medicine, vol. 47, no. 6, pp. 904–911, 2006. View at Scopus
  25. K. Ishiwata, K. Kubota, M. Murakami et al., “Re-evaluation of amino acid PET studies: can the protein synthesis rates in brain and tumor tissues be measured in vivo?” Journal of Nuclear Medicine, vol. 34, no. 11, pp. 1936–1943, 1993. View at Scopus
  26. C. Schiepers, W. Chen, T. Cloughesy, M. Dahlbom, and S. C. Huang, “18F-FDOPA kinetics in brain tumors,” Journal of Nuclear Medicine, vol. 48, no. 10, pp. 1651–1661, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. L. M. Cher, C. Murone, N. Lawrentschuk et al., “Correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in gliomas using 18F-fluoromisonidazole, 18F-FDG PET, and immunohistochemical studies,” Journal of Nuclear Medicine, vol. 47, no. 3, pp. 410–418, 2006. View at Scopus
  28. D. Thorwarth, S. M. Eschmann, F. Paulsen, and M. Alber, “A kinetic model for dynamic [18F]-Fmiso PET data to analyse tumour hypoxia,” Physics in Medicine and Biology, vol. 50, no. 10, pp. 2209–2224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Thorwarth, S. M. Eschmann, J. Scheiderbauer, F. Paulsen, and M. Alber, “Kinetic analysis of dynamic 18F-fluoromisonidazole PET correlates with radiation treatment outcome in head-and-neck cancer,” BMC Cancer, vol. 5, article 152, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Shi, M. Souvatzoglou, S. T. Astner et al., “Quantitative assessment of hypoxia kinetic models by a cross-study of dynamic 18F-FAZA and 15O-H2O in patients with head and neck tumors,” Journal of Nuclear Medicine, vol. 51, no. 9, pp. 1386–1394, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. T. Hong, J. S. Beech, R. Smith, J. C. Baron, and T. D. Fryer, “Parametric mapping of 18 Ffluoromisonidazole positron emission tomography using basis functions,” Journal of Cerebral Blood Flow and Metabolism, vol. 31, no. 2, pp. 648–657, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. W. Wang, N. Y. Lee, J. C. Georgi et al., “Pharmacokinetic analysis of hypoxia 18F-fluoromisonidazole dynamic PET in head and neck cancer,” Journal of Nuclear Medicine, vol. 51, no. 1, pp. 37–45, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Henze, J. Schuhmacher, P. Hipp et al., “PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-Octreotide: first results in patients with meningiomas,” Journal of Nuclear Medicine, vol. 42, no. 7, pp. 1053–1056, 2001. View at Scopus
  34. M. Henze, A. Dimitrakopoulou-Strauss, S. Milker-Zabel et al., “Characterization of 68Ga-DOTA-D-Phe1-Tyr 3-octreotide kinetics in patients with meningiomas,” Journal of Nuclear Medicine, vol. 46, no. 5, pp. 763–769, 2005. View at Scopus
  35. A. H. Jacobs, A. Thomas, L. W. Kracht et al., “18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors,” Journal of Nuclear Medicine, vol. 46, no. 12, pp. 1948–1958, 2005. View at Scopus
  36. M. Muzi, A. M. Spence, F. O'Sullivan et al., “Kinetic analysis of 3′-deoxy-3′-18F-fluorothymidine in patients with gliomas,” Journal of Nuclear Medicine, vol. 47, no. 10, pp. 1612–1621, 2006. View at Scopus
  37. C. Schiepers, W. Chen, M. Dahlbom, T. Cloughesy, C. K. Hoh, and S. C. Huang, “18F-fluorothymidine kinetics of malignant brain tumors,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 7, pp. 1003–1011, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. M. S. Bradbury, D. Hambardzumyan, P. B. Zanzonico et al., “Dynamic small-animal PET imaging of tumor proliferation with 3′-deoxy-3′-18F-fluorothymidine in a genetically engineered mouse model of high-grade gliomas,” Journal of Nuclear Medicine, vol. 49, no. 3, pp. 422–429, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Schiepers, M. Dahlbom, W. Chen et al., “Kinetics of -deoxy-3ʹ-18F-fluorothymidine during treatment monitoring of recurrent high-grade glioma,” Journal of Nuclear Medicine, vol. 51, no. 5, pp. 720–727, 2010. View at Scopus
  40. M. Wardak, C. Schiepers, M. Dahlbom et al., “Discriminant analysis of 18F-fluorothymidine kinetic parameters to predict survival in patients with recurrent high-grade glioma,” Clinical Cancer Research, vol. 17, no. 20, pp. 6553–6562, 2011. View at Publisher · View at Google Scholar
  41. T. Tsuchida, Y. Demura, M. Sasaki et al., “Differentiation of histological subtypes in lung cancer with 18F-FDG-PET 3-point imaging and kinetic analysis,” Hellenic Journal of Nuclear Medicine, vol. 14, no. 3, pp. 224–227, 2011.
  42. T. Torizuka, K. R. Zasadny, B. Recker, and R. L. Wahl, “Untreated primary lung and breast cancers: correlation between F-18 FDG kinetic rate constants and findings of in vitro studies,” Radiology, vol. 207, no. 3, pp. 767–774, 1998. View at Scopus
  43. C. Juhász, X. Lu, M. S. Jahania et al., “Quantification of tryptophan transport and metabolism in lung tumors using PET,” Journal of Nuclear Medicine, vol. 50, no. 3, pp. 356–363, 2009. View at Publisher · View at Google Scholar
  44. M. Muzi, H. Vesselle, J. R. Grierson et al., “Kinetic analysis of 3′-deoxy-3′-fluorothymidine PET studies: validation studies in patients with lung cancer,” Journal of Nuclear Medicine, vol. 46, no. 2, pp. 274–282, 2005. View at Scopus
  45. A. A. M. Van Der Veldt, M. Lubberink, H. N. Greuter et al., “Absolute quantification of [11C]docetaxel kinetics in lung cancer patients using positron emission tomography,” Clinical Cancer Research, vol. 17, no. 14, pp. 4814–4824, 2011. View at Publisher · View at Google Scholar
  46. J. Trojan, O. Schroeder, J. Raedle et al., “Fluorine-18 FDG positron emission tomography for imaging of hepatocellular carcinoma,” American Journal of Gastroenterology, vol. 94, no. 11, pp. 3314–3319, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Okazumi, K. Isono, K. Enomoto et al., “Evaluation of liver tumors using fluorine-18-fluorodeoxyglucose PET: characterization of tumor and assessment of effect of treatment,” Journal of Nuclear Medicine, vol. 33, no. 3, pp. 333–339, 1992. View at Scopus
  48. Y. Choi, R. A. Hawkins, S. C. Huang et al., “Evaluation of the effect of glucose ingestion and kinetic model configurations of FDG in the normal liver,” Journal of Nuclear Medicine, vol. 35, no. 5, pp. 818–823, 1994. View at Scopus
  49. C. Messa, Y. Choi, C. K. Hoh et al., “Quantification of glucose utilization in liver metastases: parametric imaging of FDG uptake with PET,” Journal of Computer Assisted Tomography, vol. 16, no. 5, pp. 684–689, 1992. View at Scopus
  50. S. Chen, C. Ho, D. Feng, and Z. Chi, “Tracer kinetic modeling of 11C-acetate applied in the liver with positron emission tomography,” IEEE Transactions on Medical Imaging, vol. 23, no. 4, pp. 426–432, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Chen and D. Feng, “Noninvasive quantification of the differential portal and arterial contribution to the liver blood supply front PET measurements using the 11C-acetate kinetic model,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 9, pp. 1579–1585, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. L. G. Strauss, S. Klippel, L. Pan, K. Schönleben, U. Haberkorn, and A. Dimitrakopoulou-Strauss, “Assessment of quantitative FDG PET data in primary colorectal tumours: which parameters are important with respect to tumour detection?” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 6, pp. 868–877, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. L. G. Strauss, D. Koczan, S. Klippel et al., “Impact of angiogenesis-related gene expression on the tracer kinetics of 18F-FDG in colorectal tumors,” Journal of Nuclear Medicine, vol. 49, no. 8, pp. 1238–1244, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. L. G. Strauss, D. Koczan, S. Klippel et al., “Impact of cell-proliferation-associated gene expression on 2-deoxy-2-[18F]fluoro-D-glucose (FDG) kinetics as measured by dynamic positron emission tomography (dPET) in Colorectal Tumors,” Molecular Imaging and Biology, vol. 13, no. 6, pp. 1290–1300, 2011. View at Publisher · View at Google Scholar
  55. J. Buijsen, J. Van Den Bogaard, M. H. M. Janssen et al., “FDG-PET provides the best correlation with the tumor specimen compared to MRI and CT in rectal cancer,” Radiotherapy and Oncology, vol. 98, no. 2, pp. 270–276, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. E. C. Ford, P. E. Kinahan, L. Hanlon et al., “Tumor delineation using PET in head and neck cancers: threshold contouring and lesion volumes,” Medical Physics, vol. 33, no. 11, pp. 4280–4288, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. M. H. M. Janssen, H. J. W. L. Aerts, M. C. Öllers et al., “Tumor delineation based on time-activity curve differences assessed with dynamic fluorodeoxyglucose positron emission tomography-computed tomography in rectal cancer patients,” International Journal of Radiation Oncology Biology Physics, vol. 73, no. 2, pp. 456–465, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. J. R. Bading, P. B. Yoo, J. D. Fissekis, M. M. Alauddin, D. Z. D'Argenio, and P. S. Conti, “Kinetic modeling of 5-fluorouracil anabolism in colorectal adenocarcinoma: a positron emission tomography study in rats,” Cancer Research, vol. 63, no. 13, pp. 3667–3674, 2003. View at Scopus
  59. L. G. Strauss, J. Hoffend, D. Koczan, L. Pan, U. Haberkorn, and A. Dimitrakopoulou-Strauss, “Early effects of FOLFOX treatment of colorectal tumour in an animal model: assessment of changes in gene expression and FDG kinetics,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, no. 8, pp. 1226–1234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Dimitrakopoulou-Strauss, L. G. Strauss, and J. Rudi, “PET-FDG as predictor of therapy response in patients with colorectal carcinoma,” Quarterly Journal of Nuclear Medicine, vol. 47, no. 1, pp. 8–13, 2003. View at Scopus
  61. A. Dimitrakopoulou-Strauss, L. G. Strauss, C. Burger et al., “Prognostic aspects of 18F-FDG PET kinetics in patients with metastatic colorectal carcinoma receiving FOLFOX chemotherapy,” Journal of Nuclear Medicine, vol. 45, no. 9, pp. 1480–1487, 2004. View at Scopus
  62. M. Schulte, D. Brecht-Krauss, B. Heymer et al., “Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET,” Journal of Nuclear Medicine, vol. 41, no. 10, pp. 1695–1701, 2000. View at Scopus
  63. A. C. Kole, O. E. Nieweg, H. J. Hoekstra, J. R. Van Horn, H. S. Koops, and W. Vaalburg, “Fluorine-18-fluorodeoxyglucose assessment of glucose metabolism in bone tumors,” Journal of Nuclear Medicine, vol. 39, no. 5, pp. 810–815, 1998. View at Scopus
  64. H. Wu, A. Dimitrakopoulou-Strauss, T. O. Heichel et al., “Quantitative evaluation of skeletal tumours with dynamic FDG PET: SUV in comparison to Patlak analysis,” European Journal of Nuclear Medicine, vol. 28, no. 6, pp. 704–710, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. R. Tian, M. Su, Y. Tian et al., “Dual-time point PET/CT with F-18 FDG for the differentiation of malignant and benign bone lesions,” Skeletal Radiology, vol. 38, no. 5, pp. 451–458, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Dimitrakopoulou-Strauss, L. G. Strauss, T. Heichel et al., “The role of quantitative 18F-FDG PET studies for the differentiation of malignant and benign bone lesions,” Journal of Nuclear Medicine, vol. 43, no. 4, pp. 510–518, 2002. View at Scopus
  67. L. G. Strauss, A. Dimitrakopoulou-Strauss, D. Koczan et al., “18F-FDG kinetics and gene expression in giant cell tumors,” Journal of Nuclear Medicine, vol. 45, no. 9, pp. 1528–1535, 2004. View at Scopus
  68. Y. Kawakami, T. Kunisada, S. Sugihara et al., “New approach for assessing vascular distribution within bone tumors using dynamic contrast-enhanced MRI,” Journal of Cancer Research and Clinical Oncology, vol. 133, no. 10, pp. 697–703, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Dimitrakopoulou-Strauss, L. G. Strauss, M. Schwarzbach et al., “Dynamic PET 18F-FDG studies in patients with primary and recurrent soft-tissue sarcomas: impact on diagnosis and correlation with grading,” Journal of Nuclear Medicine, vol. 42, no. 5, pp. 713–720, 2001. View at Scopus
  70. S. Okazumi, A. Dimitrakopoulou-Strauss, M. H. M. Schwarzbach, and L. G. Strauss, “Quantitative, dynamic 18F-FDG-PET for the evaluation of soft tissue sarcomas: relation to differential diagnosis, tumor grading and prediction of prognosis,” Hellenic Journal of Nuclear Medicine, vol. 12, no. 3, pp. 223–307, 2009. View at Scopus
  71. A. Dimitrakopoulou-Strauss, L. G. Strauss, G. Egerer et al., “Impact of dynamic 18F-FDG PET on the early prediction of therapy outcome in patients with high-risk soft-tissue sarcomas after neoadjuvant chemotherapy: a feasibility study,” Journal of Nuclear Medicine, vol. 51, no. 4, pp. 551–558, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. V. Michel, Z. Yuan, S. Ramsubir, and M. Bakovic, “Choline transport for phospholipid synthesis,” Experimental Biology and Medicine, vol. 231, no. 5, pp. 490–504, 2006. View at Scopus
  73. A. Bansal, W. Shuyan, T. Hara, R. A. Harris, and T. R. DeGrado, “Biodisposition and metabolism of [18F]fluorocholine in 9L glioma cells and 9L glioma-bearing fisher rats,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 35, no. 6, pp. 1192–1203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. G. Henriksen, M. Herz, A. Hauser, M. Schwaiger, and H. J. Wester, “Synthesis and preclinical evaluation of the choline transport tracer deshydroxy-[18F]fluorocholine ([18F]dOC),” Nuclear Medicine and Biology, vol. 31, no. 7, pp. 851–858, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. P. Shreve, P. C. Chiao, H. D. Humes, M. Schwaiger, and M. D. Gross, “Carbon-11-acetate PET imaging in renal disease,” Journal of Nuclear Medicine, vol. 36, no. 9, pp. 1595–1601, 1995. View at Scopus
  76. J. Kotzerke, B. G. Volkmer, B. Neumaier, J. E. Gschwend, R. E. Hautmann, and S. N. Reske, “Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer,” European Journal of Nuclear Medicine, vol. 29, no. 10, pp. 1380–1384, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. A. L. Vavere, S. J. Kridel, F. B. Wheeler, and J. S. Lewis, “1-11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer,” Journal of Nuclear Medicine, vol. 49, no. 2, pp. 327–334, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. C. Schiepers, C. K. Hoh, J. Nuyts et al., “1-11C-acetate kinetics of prostate cancer,” Journal of Nuclear Medicine, vol. 49, no. 2, pp. 206–215, 2008. View at Publisher · View at Google Scholar · View at Scopus