About this Journal Submit a Manuscript Table of Contents
ISRN Oncology
Volume 2012 (2012), Article ID 768190, 10 pages
http://dx.doi.org/10.5402/2012/768190
Clinical Study

Carbonic Anhydrase I as a New Plasma Biomarker for Prostate Cancer

1Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
2Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
3New Frontiers Research Laboratories, Toray Industries, Inc., 10-1 Tebiro, Kanagawa, Kamakura 248-8555, Japan
4Bio Science Department, Research and Development Center, Mitsui Knowledge Industry Co., Ltd., 2-7-14 Higashinakano, Nakano-Ku, Tokyo 164-8555, Japan
5Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan

Received 17 September 2012; Accepted 2 October 2012

Academic Editors: A. E. Bilsland, B. Comin-Anduix, G. Ferrandina, and S. Holdenrieder

Copyright © 2012 Michiko Takakura et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA—A Cancer Journal for Clinicians, vol. 59, no. 4, pp. 225–249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. W. J. Catalona, D. S. Smith, T. L. Ratliff, and J. W. Basler, “Detection of organ-confined prostate cancer is increased through prostate- specific antigen-based screening,” JAMA, vol. 270, no. 8, pp. 948–954, 1993. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Pannek and A. W. Partin, “Prostate-specific antigen: what's new in 1997,” Oncology, vol. 11, no. 9, pp. 1273–1278, 1997. View at Scopus
  4. S. Loeb, S. N. Gashti, and W. J. Catalona, “Exclusion of inflammation in the differential diagnosis of an elevated prostate-specific antigen (PSA),” Urologic Oncology, vol. 27, no. 1, pp. 64–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. W. J. Catalona, J. P. Richie, F. R. Ahmann et al., “Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: Results of a multicenter clinical trial of 6,630 men,” Journal of Urology, vol. 151, no. 5, pp. 1283–1290, 1994. View at Scopus
  6. W. J. Catalona, D. S. Smith, and D. K. Ornstein, “Prostate cancer detection in men with serum PSA concentrations of 2.6 to 4.0 ng/mL and benign prostate examination: Enhancement of specificity with free PSA measurements,” JAMA, vol. 277, no. 18, pp. 1452–1455, 1997. View at Scopus
  7. A. Magklara, A. Scorilas, W. J. Catalona, and E. P. Diamandis, “The combination of human glandular Kallikrein and free prostrate- specific antigen (PSA) enhances discrimination between prostate cancer and benign prostatic hyperplasia in patients with moderately increased total PSA,” Clinical Chemistry, vol. 45, no. 11, pp. 1960–1966, 1999. View at Scopus
  8. J. Cervera Deval, F. J. Morales Olaya, J. Jornet Fayos, and M. González Añón, “Diagnostic value of the second prostate biopsies in males of risk. Study stratified by value of PSA,” Actas Urologicas Espanolas, vol. 28, no. 9, pp. 666–671, 2004. View at Scopus
  9. M. Raber, V. Scattoni, A. Salonia, P. Consonni, and P. Rigatti, “Repeated ultrasound-guided transrectal prostate biopsy in patients with negative histologic test,” Archivio Italiano di Urologia, Andrologia, vol. 72, no. 4, pp. 197–199, 2000. View at Scopus
  10. M. Ono, M. Shitashige, K. Honda et al., “Label-free quantitative proteomics using large peptide data sets generated by nanoflow liquid chromatography and mass spectromery,” Molecular and Cellular Proteomics, vol. 5, no. 7, pp. 1338–1347, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Negishi, M. Ono, Y. Handa et al., “Large-scale quantitative clinical proteomics by label-free liquid chromatography and mass spectrometry,” Cancer Science, vol. 100, no. 3, pp. 514–519, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Ono, J. Matsubara, K. Honda et al., “Prolyl 4-hydroxylation of α-fibrinogen. A novel protein modification revealed by plasma proteomics,” The Journal of Biological Chemistry, vol. 284, no. 42, pp. 29041–29049, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Murakoshi, K. Honda, S. Sasazuki et al., “Plasma biomarker discovery and validation for colorectal cancer by quantitative shotgun mass spectrometry and protein microarray,” Cancer Science, vol. 102, no. 3, pp. 630–638, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Matsubara, K. Honda, M. Ono et al., “Reduced plasma level of CXC chemokine ligand 7 in patients with pancreatic cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 20, no. 1, pp. 160–171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Yokomizo, M. Takakura, Y. Kanai et al., “Use of quantitative shotgun proteomics to identify fibronectin 1 as a potential plasma biomarker for clear cell carcinoma of the kidney,” Cancer Biomarkers, vol. 10, no. 3-4, pp. 175–183, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Ono, M. Kamita, Y. Murakoshi, et al., “Biomarker discovery of pancreatic and gastrointestinal cancer by 2DICAL: 2-dimensional image-converted analysis of liquid chromatography and mass spectrometry,” International Journal of Proteomics, vol. 2012, Article ID 897412, 10 pages, 2012. View at Publisher · View at Google Scholar
  17. Y. Tanaka, H. Akiyama, T. Kuroda et al., “A novel approach and protocol for discovering extremely low-abundance proteins in serum,” Proteomics, vol. 6, no. 17, pp. 4845–4855, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Idogawa, T. Yamada, K. Honda, S. Sato, K. Imai, and S. Hirohashi, “Poly(ADP-ribose) polymerase-1 is a component of the oncogenic T-cell factor-4/beta;-catenin complex,” Gastroenterology, vol. 128, no. 7, pp. 1919–1936, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Lilja, D. Ulmert, and A. J. Vickers, “Prostate-specific antigen and prostate cancer: Prediction, detection and monitoring,” Nature Reviews Cancer, vol. 8, no. 4, pp. 268–278, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Loeb and W. J. Catalona, “What to do with an abnormal PSA test,” Oncologist, vol. 13, no. 3, pp. 299–305, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. C. T. Supuran and A. Scozzafava, “Carbonic anhydrases as targets for medicinal chemistry,” Bioorganic and Medicinal Chemistry, vol. 15, no. 13, pp. 4336–4350, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. E. R. Swenson, “Distribution and functions of carbonic anhydrase in the gastrointestinal tract,” in Carbonic Anhydrases: Cellular Physiology and Molecular Genetics, S. J. Dodgson, R. E. Tashian, G. Gros, and N. D. Carter, Eds., pp. 265–287, Plenum Press, New York, NY, USA, 1991.
  23. G. Lonnerholm and P. Wistrand, “Carbonic anhydrase in the human fetal gastrointestinal tract,” Biology of the Neonate, vol. 44, no. 3, pp. 166–176, 1983. View at Scopus
  24. I. B. Renes, M. Verburg, D. J. P. M. Van Nispen et al., “Epithelial proliferation, cell death, and gene expression in experimental colitis: Alterations in carbonic anhydrase I, mucin MUC2, and trefoil factor 3 expression,” International Journal of Colorectal Disease, vol. 17, no. 5, pp. 317–326, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. C. T. Supuran, “Carbonic anhydrase inhibition/activation: Trip of a scientist around the world in the search of novel chemotypes and drug targets,” Current Pharmaceutical Design, vol. 16, no. 29, pp. 3233–3245, 2010. View at Publisher · View at Google Scholar · View at Scopus