About this Journal Submit a Manuscript Table of Contents
ISRN Oncology
Volume 2013 (2013), Article ID 290568, 16 pages
http://dx.doi.org/10.1155/2013/290568
Review Article

Pathways to Breast Cancer Recurrence

Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA

Received 13 December 2012; Accepted 17 January 2013

Academic Editors: C. Perez, Y. Wu, and W. Yang

Copyright © 2013 Aamir Ahmad. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics,” CA: A Cancer Journal, vol. 62, pp. 10–29, 2012.
  2. “NCI's SEER cancer statistics review,” 2012, http://seer.cancer.gov/csr/1975_2009_pops09/results_merged/sect_04_breast.pdf.
  3. E. P. Simard, S. Fedewa, J. Ma, R. Siegel, and A. Jemal, “Widening socioeconomic disparities in cervical cancer mortality among women in 26 states, 1993–2007,” Cancer, vol. 118, pp. 5110–5116, 2012.
  4. J. Tang, A. Ahmad, and F. H. Sarkar, “The complexities of racial disparity in breast cancer,” in Breast Cancer Metastasis and Drug Resistance, A. Ahmad, Ed., pp. 35–46, Springer, New York, NY, USA, 2012.
  5. A. Ahmad, Z. Wang, R. Ali, et al., “Cell cycle regulatory proteins in breast cancer: molecular determinants of drug resistance and targets for anticancer therapies,” in Breast Cancer Cells, R. L. Aft, Ed., pp. 113–130, InTech, 2012.
  6. A. Ahmad and F. H. Sarkar, “Current understanding of drug resistance mechanisms and therapeutic targets in HER2 overexpressing breast cancers,” in Breast Cancer Metastasis and Drug Resistance, A. Ahmad, Ed., pp. 261–274, Springer, New York, NY, USA, 2012.
  7. S. E. Moody, D. Perez, T. C. Pan et al., “The transcriptional repressor Snail promotes mammary tumor recurrence,” Cancer Cell, vol. 8, no. 3, pp. 197–209, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. P. E. Goss and A. F. Chambers, “Does tumour dormancy offer a therapeutic target?” Nature Reviews Cancer, vol. 10, no. 12, pp. 871–877, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Saphner, D. C. Tormey, and R. Gray, “Annual hazard rates of recurrence for breast cancer after primary therapy,” Journal of Clinical Oncology, vol. 14, no. 10, pp. 2738–2746, 1996. View at Scopus
  10. “Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials,” Lancet, vol. 365, pp. 1687–1717, 2005.
  11. S. Y. Wang, T. Shamliyan, B. A. Virnig, and R. Kane, “Tumor characteristics as predictors of local recurrence after treatment of ductal carcinoma in situ: a meta-analysis,” Breast Cancer Research and Treatment, vol. 127, no. 1, pp. 1–14, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. R. D. Chacón and M. V. Costanzo, “Triple-negative breast cancer,” Breast Cancer Research, vol. 12, no. 2, article S3, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. K. E. Huber, L. A. Carey, and D. E. Wazer, “Breast cancer molecular subtypes in patients with locally advanced disease: impact on prognosis, patterns of recurrence, and response to therapy,” Seminars in Radiation Oncology, vol. 19, no. 4, pp. 204–210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. De Boer, J. A. A. M. Van Dijck, P. Bult, G. F. Borm, and V. C. G. Tjan-Heijnen, “Breast cancer prognosis and occult lymph node metastases, isolated tumor cells, and micrometastases,” Journal of the National Cancer Institute, vol. 102, no. 6, pp. 410–425, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. L. R. Cavalli, “Molecular markers of breast axillary lymph node metastasis,” Expert Review of Molecular Diagnostics, vol. 9, no. 5, pp. 441–454, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Ruiterkamp and M. F. Ernst, “The role of surgery in metastatic breast cancer,” in European Journal of Cancer, vol. 47, supplement 3, pp. S6–S22, 2011.
  17. M. Gieni, R. Avram, L. Dickson, et al., “Local breast cancer recurrence after mastectomy and immediate breast reconstruction for invasive cancer: a meta-analysis,” Breast, vol. 21, pp. 230–236, 2012.
  18. B. Fisher, S. Anderson, C. K. Redmond, N. Wolmark, D. L. Wickerham, and W. M. Cronin, “Reanalysis and results after 12 years of follow-up in a randomized clinical trial comparing total mastectomy with lumpectomy with or without irradiation in the treatment of breast cancer,” The New England Journal of Medicine, vol. 333, no. 22, pp. 1456–1461, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. J. A. Jacobson, D. N. Danforth, K. H. Cowan et al., “Ten-year results of a comparison of conservation with mastectomy in the treatment of stage I and II breast cancer,” The New England Journal of Medicine, vol. 332, no. 14, pp. 907–911, 1995. View at Publisher · View at Google Scholar · View at Scopus
  20. F. van der Leij, P. H. Elkhuizen, H. Bartelink, and M. J. van de Vijver, “Predictive factors for local recurrence in breast cancer,” Seminars in Radiation Oncology, vol. 22, pp. 100–107, 2012.
  21. N. Houssami, P. MacAskill, M. L. Marinovich et al., “Meta-analysis of the impact of surgical margins on local recurrence in women with early-stage invasive breast cancer treated with breast-conserving therapy,” European Journal of Cancer, vol. 46, no. 18, pp. 3219–3232, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Darby, P. McGale, C. Correa, et al., “Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10, 801 women in 17 randomised trials,” Lancet, vol. 378, pp. 1707–1716, 2011.
  23. A. J. Lowery, M. R. Kell, R. W. Glynn, M. J. Kerin, and K. J. Sweeney, “Locoregional recurrence after breast cancer surgery: a systematic review by receptor phenotype,” Breast Cancer Research and Treatment, vol. 133, pp. 831–841, 2012.
  24. D. Hölzel, R. T. Emeny, and J. Engel, “True local recurrences do not metastasize,” Cancer Metastasis Reviews, vol. 30, no. 2, pp. 161–176, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Meng, J. Zhong, S. Liu, M. Murray, and A. M. Gonzalez-Angulo, “A new hypothesis for the cancer mechanism,” Cancer and Metastasis Reviews, vol. 31, pp. 247–268, 2012.
  26. L. Lacerda, L. Pusztai, and W. A. Woodward, “The role of tumor initiating cells in drug resistance of breast cancer: implications for future therapeutic approaches,” Drug Resistance Updates, vol. 13, no. 4-5, pp. 99–108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. S. P. McDermott and M. S. Wicha, “Targeting breast cancer stem cells,” Molecular Oncology, vol. 4, no. 5, pp. 404–419, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Sanguinetti, G. Bistoni, and N. Avenia, “Stem cells and breast cancer, where we are? A concise review of literature,” G Chir, vol. 32, pp. 438–446, 2011.
  29. M. Rahman, L. Deleyrolle, V. Vedam-Mai, H. Azari, M. Abd-El-Barr, and B. A. Reynolds, “The cancer stem cell hypothesis: failures and pitfalls,” Neurosurgery, vol. 68, no. 2, pp. 531–545, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Baumann, M. Krause, and R. Hill, “Exploring the role of cancer stem cells in radioresistance,” Nature Reviews Cancer, vol. 8, no. 7, pp. 545–554, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Wei, T. T. Liu, H. H. Wang, et al., “Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-kappa B,” Breast Cancer Research, vol. 13, article R101, 2011.
  32. A. Ahmad, Y. Li, B. Bao, and F. H. Sarkar, “Resistance and DNA repair mechanisms of cancer stem cells: potential molecular targets for therapy,” in DNA Repair of Cancer Stem Cells, L. A. Mathews, S. M. Cabarcas, and E. M. Hurt, Eds., pp. 33–52, Springer, New York, NY, USA, 2012.
  33. M. M. Gottesman, T. Fojo, and S. E. Bates, “Multidrug resistance in cancer: role of ATP-dependent transporters,” Nature Reviews Cancer, vol. 2, no. 1, pp. 48–58, 2002. View at Scopus
  34. M. Dean, “ABC transporters, drug resistance, and cancer stem cells,” Journal of Mammary Gland Biology and Neoplasia, vol. 14, no. 1, pp. 3–9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Ueda, C. Cardarelli, M. M. Gottesman, and T. Pastan, “Expression of a full-length cDNA for the human 'MDR1' gene confers resistance to colchicine, doxorubicin, and vinblastine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 9, pp. 3004–3008, 1987. View at Scopus
  36. C. W. Scharenberg, M. A. Harkey, and B. Torok-Storb, “The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors,” Blood, vol. 99, no. 2, pp. 507–512, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Kim, H. Turnquist, J. Jackson et al., “The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells,” Clinical Cancer Research, vol. 8, no. 1, pp. 22–28, 2002. View at Scopus
  38. H. Lou and M. Dean, “Targeted therapy for cancer stem cells: the patched pathway and ABC transporters,” Oncogene, vol. 26, no. 9, pp. 1357–1360, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. An and W. M. Ongkeko, “ABCG2: the key to chemoresistance in cancer stem cells?” Expert Opinion on Drug Metabolism and Toxicology, vol. 5, no. 12, pp. 1529–1542, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Elliot, J. Adams, and M. Al-Hajj, “The ABCs of cancer stem cell drug resistance,” IDrugs, vol. 13, no. 9, pp. 632–635, 2010. View at Scopus
  41. K. Sampieri and R. Fodde, “Cancer stem cells and metastasis,” Seminars in Cancer Biology, vol. 22, pp. 187–193, 2012.
  42. A. J. Fridriksdottir, O. W. Petersen, and L. Ronnov-Jessen, “Mammary gland stem cells: current status and future challenges,” The International Journal of Developmental Biology, vol. 55, pp. 719–729, 2011.
  43. S. Badve and H. Nakshatri, “Breast-cancer stem cells-beyond semantics,” The Lancet Oncology, vol. 13, pp. e43–e48, 2012.
  44. C. E. Eyler and J. N. Rich, “Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis,” Journal of Clinical Oncology, vol. 26, no. 17, pp. 2839–2845, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Korkaya, S. Liu, and M. S. Wicha, “Breast cancer stem cells, cytokine networks, and the tumor microenvironment,” The Journal of Clinical Investigation, vol. 121, pp. 3804–3809, 2011.
  46. F. Schmitt, S. Ricardo, A. F. Vieira, M. R. Dionisio, and J. Paredes, “Cancer stem cell markers in breast neoplasias: their relevance and distribution in distinct molecular subtypes,” Virchows Archiv, vol. 460, pp. 545–553, 2012.
  47. M. A. Velasco-Velazquez, N. Homsi, M. De La Fuente, and R. G. Pestell, “Breast cancer stem cells,” The International Journal of Biochemistry & Cell Biology, vol. 44, pp. 573–577, 2012.
  48. G. J. Prud'homme, “Cancer stem cells and novel targets for antitumor strategies,” Current Pharmaceutical Design, vol. 18, pp. 2838–2849, 2012.
  49. M. P. Ablett, J. K. Singh, and R. B. Clarke, “Stem cells in breast tumours: are they ready for the clinic?” European Journal of Cancer, vol. 48, pp. 2104–2116, 2012.
  50. Y. Yu, G. Ramena, and R. C. Elble, “The role of cancer stem cells in relapse of solid tumors,” Frontiers in Bioscience, vol. 4, pp. 1528–1541, 2012.
  51. B. G. Hollier, K. Evans, and S. A. Mani, “The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies,” Journal of Mammary Gland Biology and Neoplasia, vol. 14, no. 1, pp. 29–43, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Raimondi, W. Gianni, E. Cortesi, and P. Gazzaniga, “Cancer stem cells and epithelial-mesenchymal transition: revisiting minimal residual disease,” Current Cancer Drug Targets, vol. 10, no. 5, pp. 496–508, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. B. Dave, V. Mittal, N. M. Tan, and J. C. Chang, “Epithelial-mesenchymal transition, cancer stem cells and treatment resistance,” Breast Cancer Research, vol. 14, article 202, 2012.
  54. J. J. Christiansen and A. K. Rajasekaran, “Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis,” Cancer Research, vol. 66, no. 17, pp. 8319–8326, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. J. P. Thiery, “Epithelial-mesenchymal transitions in tumour progression,” Nature Reviews Cancer, vol. 2, pp. 442–454, 2002.
  56. Z. Wang, Y. Li, and F. H. Sarkar, “Signaling mechanism(s) of reactive oxygen species in epithelial-mesenchymal transition reminiscent of cancer stem cells in tumor progression,” Current Stem Cell Research and Therapy, vol. 5, no. 1, pp. 74–80, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. F. H. Sarkar, Y. Li, Z. Wang, and D. Kong, “Pancreatic cancer stem cells and EMT in drug resistance and metastasis,” Minerva Chirurgica, vol. 64, no. 5, pp. 489–500, 2009. View at Scopus
  58. H. J. Hugo, R. Wafai, T. Blick, E. W. Thompson, and D. F. Newgreen, “Staurosporine augments EGF-mediated EMT in PMC42-LA cells through actin depolymerisation, focal contact size reduction and Snail1 induction—a model for cross-modulation,” BMC Cancer, vol. 9, article 235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. J. G. H. van Nes, E. M. de Kruijf, H. Putter et al., “Co-expression of SNAIL and TWIST determines prognosis in estrogen receptor-positive early breast cancer patients,” Breast Cancer Research and Treatment, vol. 133, pp. 49–59, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. D. D. Tran, C. A. Corsa, H. Biswas, R. L. Aft, and G. D. Longmore, “Temporal and spatial cooperation of Snail1 and Twist1 during epithelial-mesenchymal transition predicts for human breast cancer recurrence,” Molecular Cancer Research, vol. 9, pp. 1644–1657, 2011.
  61. J. E. Kwon, W. H. Jung, and J. S. Koo, “Molecules involved in epithelial-mesenchymal transition and epithelial-stromal interaction in phyllodes tumors: implications for histologic grade and prognosis,” Tumor Biology, vol. 33, pp. 787–798, 2012.
  62. T. Imamura, A. Hikita, and Y. Inoue, “The roles of TGF-beta signaling in carcinogenesis and breast cancer metastasis,” Breast Cancer, vol. 19, pp. 118–124, 2012.
  63. M. A. Taylor, J. G. Parvani, and W. P. Schiemann, “The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-β in normal and malignant mammary epithelial cells,” Journal of Mammary Gland Biology and Neoplasia, vol. 15, no. 2, pp. 169–190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Romagnoli, K. Belguise, Z. Yu, et al., “Epithelial-to-mesenchymal transition induced by TGF-beta1 is mediated by blimp-1-dependent repression of BMP-5,” Cancer Research, vol. 72, pp. 6268–6278, 2012.
  65. Z. D. Lv, B. Kong, J. G. Li, et al., “Transforming growth factor-beta 1 enhances the invasiveness of breast cancer cells by inducing a Smad2-dependent epithelial-to-mesenchymal transition,” Oncology Reports, vol. 29, pp. 219–225, 2013.
  66. A. Bandyopadhyay, L. Wang, J. Agyin et al., “Doxorubicin in combination with a small TGFβ inhibitor: a potential novel therapy for metastatic breast cancer in mouse models,” PLoS ONE, vol. 5, no. 4, article e10365, 2010. View at Scopus
  67. M. K. Asiedu, J. N. Ingle, M. D. Behrens, D. C. Radisky, and K. L. Knutson, “TGFβ/TNFα-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype,” Cancer Research, vol. 71, no. 13, pp. 4707–4719, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. N. P. Tobin, A. H. Sims, K. L. Lundgren, S. Lehn, and G. Landberg, “Cyclin D1, Id1 and EMT in breast cancer,” BMC Cancer, vol. 11, article 417, 2011.
  69. T. Liu, X. Zhang, M. Shang, et al., “Dysregulated expression of Slug, vimentin, and E-cadherin correlates with poor clinical outcome in patients with basal-like breast cancer,” Journal of Surgical Oncology, vol. 107, no. 2, pp. 188–194, 2013.
  70. A. Ahmad, A. Aboukameel, D. Kong et al., “Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells,” Cancer Research, vol. 71, no. 9, pp. 3400–3409, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Funasaka and A. Raz, “The role of autocrine motility factor in tumor and tumor microenvironment,” Cancer and Metastasis Reviews, vol. 26, no. 3-4, pp. 725–735, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Funasaka, V. Hogan, and A. Raz, “Phosphoglucose isomerase/autocrine motility factor mediates epithelial and mesenchymal phenotype conversions in breast cancer,” Cancer Research, vol. 69, no. 13, pp. 5349–5356, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Ahmad, A. S. Ali, S. Ali, Z. Wang, D. Kong, and F. H. Sarkar, “MicroRNAs: targets of interest in breast cancer research,” in MicroRNA: Expression, Detection and Therapeutic Strategies, J. A. Mulligan, Ed., pp. 59–78, Nova Publishers, New York, NY, USA, 2011.
  74. S. Meng, D. Tripathy, E. P. Frenkel et al., “Circulating tumor cells in patients with breast cancer dormancy,” Clinical Cancer Research, vol. 10, no. 24, pp. 8152–8162, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. E. S. Lianidou and A. Markou, “Circulating tumor cells in breast cancer: detection systems, molecular characterization, and future challenges,” Clinical Chemistry, vol. 57, pp. 1242–1255, 2011.
  76. G. N. Naumov, J. L. Townson, I. C. MacDonald et al., “Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases,” Breast Cancer Research and Treatment, vol. 82, no. 3, pp. 199–206, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. D. A. Gewirtz, “Autophagy, senescence and tumor dormancy in cancer therapy,” Autophagy, vol. 5, no. 8, pp. 1232–1234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Barkan and A. F. Chambers, “beta1-integrin: a potential therapeutic target in the battle against cancer recurrence,” Clinical Cancer Research, vol. 17, pp. 7219–7223, 2011.
  79. D. Barkan, H. Kleinman, J. L. Simmons et al., “Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton,” Cancer Research, vol. 68, no. 15, pp. 6241–6250, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. D. Barkan, L. H. El Touny, A. M. Michalowski et al., “Metastatic growth from dormant cells induced by a Col-I-enriched fibrotic environment,” Cancer Research, vol. 70, no. 14, pp. 5706–5716, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Luo and J. L. Guan, “Focal adhesion kinase: a prominent determinant in breast cancer initiation, progression and metastasis,” Cancer Letters, vol. 289, no. 2, pp. 127–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. K. Dass, A. Ahmad, A. S. Azmi, S. H. Sarkar, and F. H. Sarkar, “Evolving role of uPA/uPAR system in human cancers,” Cancer Treatment Reviews, vol. 34, no. 2, pp. 122–136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Ahmad, D. Kong, Z. Wang, S. H. Sarkar, S. Banerjee, and F. H. Sarkar, “Down-regulation of uPA and uPAR by 3,3′-diindolylmethane contributes to the inhibition of cell growth and migration of breast cancer cells,” Journal of Cellular Biochemistry, vol. 108, no. 4, pp. 916–925, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Ahmad, Z. Wang, D. Kong et al., “FoxM1 down-regulation leads to inhibition of proliferation, migration and invasion of breast cancer cells through the modulation of extra-cellular matrix degrading factors,” Breast Cancer Research and Treatment, vol. 122, no. 2, pp. 337–346, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. P. J. Keely, “Mechanisms by which the extracellular matrix and integrin signaling act to regulate the switch between tumor suppression and tumor promotion,” Journal of Mammary Gland Biology and Neoplasia, vol. 16, pp. 205–219, 2011.
  86. J. A. McCubrey, L. S. Steelman, W. H. Chappell et al., “Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance,” Biochimica et Biophysica Acta, vol. 1773, no. 8, pp. 1263–1284, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. S. A. Eccles, “The epidermal growth factor receptor/Erb-B/HER family in normal and malignant breast biology,” The International Journal of Developmental Biology, vol. 55, pp. 685–696, 2011.
  88. J. Foley, N. K. Nickerson, S. Nam et al., “EGFR signaling in breast cancer: bad to the bone,” Seminars in Cell and Developmental Biology, vol. 21, no. 9, pp. 951–960, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Artavanis-Tsakonas, K. Matsuno, and M. E. Fortini, “Notch signaling,” Science, vol. 268, no. 5208, pp. 225–232, 1995. View at Scopus
  90. S. Artavanis-Tsakonas, M. D. Rand, and R. J. Lake, “Notch signaling: cell fate control and signal integration in development,” Science, vol. 284, no. 5415, pp. 770–776, 1999. View at Publisher · View at Google Scholar · View at Scopus
  91. F. Radtke and K. Raj, “The role of Notch in tumorigenesis: oncogene or tumour suppressor,” Nature Reviews Cancer, vol. 3, no. 10, pp. 756–767, 2003. View at Scopus
  92. W. R. Gordon, D. Vardar-Ulu, G. Histen, C. Sanchez-Irizarry, J. C. Aster, and S. C. Blacklow, “Structural basis for autoinhibition of Notch,” Nature Structural and Molecular Biology, vol. 14, no. 4, pp. 295–300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Reedijk, D. Pinnaduwage, B. C. Dickson et al., “JAG1 expression is associated with a basal phenotype and recurrence in lymph node-negative breast cancer,” Breast Cancer Research and Treatment, vol. 111, no. 3, pp. 439–448, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. B. Cohen, M. Shimizu, J. Izrailit et al., “Cyclin D1 is a direct target of JAG1-mediated Notch signaling in breast cancer,” Breast Cancer Research and Treatment, vol. 123, no. 1, pp. 113–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. H. Harrison, G. Farnie, S. J. Howell et al., “Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor,” Cancer Research, vol. 70, no. 2, pp. 709–718, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. P. Grudzien, S. Lo, K. S. Albain et al., “Inhibition of notch signaling reduces the stem-like population of breast cancer cells and prevents mammosphere formation,” Anticancer Research, vol. 30, no. 10, pp. 3853–3867, 2010. View at Scopus
  97. S. Kent, J. Hutchinson, A. Balboni, A. Decastro, P. Cherukuri, and J. Direnzo, “DeltaNp63alpha promotes cellular quiescence via induction and activation of Notch3,” Cell Cycle, vol. 10, pp. 3111–3118, 2011.
  98. M. Kondratyev, A. Kreso, R. M. Hallett, et al., “Gamma-secretase inhibitors target tumor-initiating cells in a mouse model of ERBB2 breast cancer,” Oncogene, vol. 31, pp. 93–103, 2012.
  99. M. Qiu, Q. Peng, I. Jiang, et al., “Specific inhibition of Notch1 signaling enhances the antitumor efficacy of chemotherapy in triple negative breast cancer through reduction of cancer stem cells,” Cancer Letters, vol. 328, pp. 261–270, 2013.
  100. M. Shimizu, B. Cohen, P. Goldvasser, H. Berman, C. Virtanen, and M. Reedijk, “Plasminogen activator uPA is a direct transcriptional target of the JAG1-notch receptor signaling pathway in breast cancer,” Cancer Research, vol. 71, no. 1, pp. 277–286, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. K. Pandya, K. Meeke, A. G. Clementz, et al., “Targeting both Notch and ErbB-2 signalling pathways is required for prevention of ErbB-2-positive breast tumour recurrence,” British Journal of Cancer, vol. 105, pp. 796–806, 2011.
  102. D. J. Slamon, G. M. Clark, S. G. Wong, W. J. Levin, A. Ullrich, and W. L. McGuire, “Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene,” Science, vol. 235, no. 4785, pp. 182–191, 1987. View at Scopus
  103. B. C. Browne, N. O'Brien, M. J. Duffy, J. Crown, and N. O'Donovan, “HER-2 signaling and inhibition in breast cancer,” Current Cancer Drug Targets, vol. 9, no. 3, pp. 419–438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. T. Vu and F. X. Claret, “Trastuzumab: updated mechanisms of action and resistance in breast cancer,” Frontiers in Oncology, vol. 2, article 62, 2012.
  105. M. J. Simmons, R. Serra, N. Hermance, and M. A. Kelliher, “NOTCH1 inhibition in vivo results in mammary tumor regression and reduced mammary tumorsphere forming activity in vitro,” Breast Cancer Res, vol. 14, article R126, 2012.
  106. S. Gangopadhyay, A. Nandy, P. Hor, and A. Mukhopadhyay, “Breast cancer stem cells: a novel therapeutic target,” Clinical Breast Cancer, vol. 13, no. 1, pp. 7–15, 2013.
  107. W. J. Nelson and R. Nusse, “Convergence of Wnt, β-Catenin, and Cadherin pathways,” Science, vol. 303, no. 5663, pp. 1483–1487, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. C. Karamboulas and L. Ailles, “Developmental signaling pathways in cancer stem cells of solid tumors,” Biochim Biophys Acta, vol. 1830, no. 2, pp. 2481–2495, 2013.
  109. M. Jönsson, J. Dejmek, P. O. Bendahl, and T. Andersson, “Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas,” Cancer Research, vol. 62, no. 2, pp. 409–416, 2002. View at Scopus
  110. A. Säfholm, K. Leandersson, J. Dejmek, C. K. Nielsen, B. O. Villoutreix, and T. Andersson, “A formylated hexapeptide ligand mimics the ability of Wnt-5a to impair migration of human breast epithelial cells,” Journal of Biological Chemistry, vol. 281, no. 5, pp. 2740–2749, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. K. E. Paulson, K. Rieger-Christ, M. A. McDevitt et al., “Alterations of the HBP1 transcriptional repressor are associated with invasive breast cancer,” Cancer Research, vol. 67, no. 13, pp. 6136–6145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. M. T. Debies, S. A. Gestl, J. L. Mathers et al., “Tumor escape in a Wnt1-dependent mouse breast cancer model is enabled by p19Arf/p53 pathway lesions but not p16Ink4a loss,” Journal of Clinical Investigation, vol. 118, no. 1, pp. 51–63, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. M. Smid, Y. Wang, Y. Zhang et al., “Subtypes of breast cancer show preferential site of relapse,” Cancer Research, vol. 68, no. 9, pp. 3108–3114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. S. Yin, L. Xu, S. Bandyopadhyay, S. Sethi, and K. B. Reddy, “Cisplatin and TRAIL enhance breast cancer stem cell death,” International Journal of Oncology, vol. 39, pp. 891–898, 2011.
  115. S. Rungta and C. G. Kleer, “Metaplastic carcinomas of the breast: diagnostic challenges and new translational insights,” Archives of Pathology & Laboratory Medicine, vol. 136, pp. 896–900, 2012.
  116. P. W. Ingham and A. P. McMahon, “Hedgehog signaling in animal development: paradigms and principles,” Genes and Development, vol. 15, no. 23, pp. 3059–3087, 2001. View at Publisher · View at Google Scholar · View at Scopus
  117. B. Z. Stanton and L. F. Peng, “Small-molecule modulators of the Sonic Hedgehog signaling pathway,” Molecular BioSystems, vol. 6, no. 1, pp. 44–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  118. D. M. Stone, M. Hynes, M. Armanini et al., “The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog,” Nature, vol. 384, no. 6605, pp. 129–134, 1996. View at Publisher · View at Google Scholar · View at Scopus
  119. J. Izrailit and M. Reedijk, “Developmental pathways in breast cancer and breast tumor-initiating cells: therapeutic implications,” Cancer Letters, vol. 317, pp. 115–126, 2012.
  120. N. B. Hassounah, T. A. Bunch, and K. M. McDermott, “Molecular pathways: the role of primary cilia in cancer progression and therapeutics with a focus on Hedgehog signaling,” Clinical Cancer Research, vol. 18, pp. 2429–2435, 2012.
  121. S. A. O'Toole, D. A. Machalek, R. F. Shearer et al., “Hedgehog overexpression is associated with stromal interactions and predicts for poor outcome in breast cancer,” Cancer Research, vol. 71, no. 11, pp. 4002–4014, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. L. G. Harris, L. K. Pannell, S. Singh, R. S. Samant, and L. A. Shevde, “Increased vascularity and spontaneous metastasis of breast cancer by hedgehog signaling mediated upregulation of cyr61,” Oncogene, vol. 31, pp. 3370–3380, 2012.
  123. S. Das, R. S. Samant, and L. A. Shevde, “The hedgehog pathway conditions the bone microenvironment for osteolytic metastasis of breast cancer,” International Journal of Breast Cancer, vol. 2012, Article ID 298623, 2012.
  124. S. Das, J. A. Tucker, S. Khullar, R. S. Samant, and L. A. Shevde, “Hedgehog signaling in tumor cells facilitates osteoblast-enhanced osteolytic metastases,” PLoS One, vol. 7, article e34374, 2012.
  125. C. M. Siddappa, M. A. Watson, S. G. Pillai, K. Trinkaus, T. Fleming, and R. Aft, “Detection of disseminated tumor cells in the bone marrow of breast cancer patients using multiplex gene expression measurements identifies new therapeutic targets in patients at high risk for the development of metastatic disease,” Breast Cancer Research and Treatment, vol. 137, no. 1, pp. 45–56, 2013.
  126. Y. Li, W. Yang, Q. Yang, and S. Zhou, “Nuclear localization of GLI1 and elevated expression of FOXC2 in breast cancer is associated with the basal-like phenotype,” Histology and Histopathology, vol. 27, pp. 475–484, 2012.
  127. Y. Tao, J. Mao, Q. Zhang, and L. Li, “Overexpression of Hedgehog signaling molecules and its involvement in triple-negative breast cancer,” Oncology Letters, vol. 2, no. 5, pp. 995–1001, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. B. Ramaswamy, Y. Lu, K. Y. Teng, et al., “Hedgehog signaling is a novel therapeutic target in tamoxifen-resistant breast cancer aberrantly activated by PI3K/AKT pathway,” Cancer Research, vol. 72, pp. 5048–5059, 2012.
  129. R. Garzon, M. Fabbri, A. Cimmino, G. A. Calin, and C. M. Croce, “MicroRNA expression and function in cancer,” Trends in Molecular Medicine, vol. 12, no. 12, pp. 580–587, 2006. View at Publisher · View at Google Scholar · View at Scopus
  130. C. M. Croce, “Causes and consequences of microRNA dysregulation in cancer,” Nature Reviews Genetics, vol. 10, no. 10, pp. 704–714, 2009. View at Publisher · View at Google Scholar · View at Scopus
  131. S. K. Shenouda and S. K. Alahari, “MicroRNA function in cancer: oncogene or a tumor suppressor?” Cancer and Metastasis Reviews, vol. 28, no. 3-4, pp. 369–378, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. A. J. Lowery, N. Miller, R. E. McNeill, and M. J. Kerin, “MicroRNAs as prognostic indicators and therapeutic targets: potential effect on breast cancer management,” Clinical Cancer Research, vol. 14, no. 2, pp. 360–365, 2008. View at Publisher · View at Google Scholar · View at Scopus
  133. B. D. Adams, I. K. Guttilla, and B. A. White, “Involvement of MicroRNAs in breast cancer,” Seminars in Reproductive Medicine, vol. 26, no. 6, pp. 522–536, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. M. Shi and N. Guo, “MicroRNA expression and its implications for the diagnosis and therapeutic strategies of breast cancer,” Cancer Treatment Reviews, vol. 35, no. 4, pp. 328–334, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. D. R. Hurst, M. D. Edmonds, and D. R. Welch, “Metastamir: the field of metastasis-regulatory microRNA is spreading,” Cancer Research, vol. 69, no. 19, pp. 7495–7498, 2009. View at Publisher · View at Google Scholar · View at Scopus
  136. S. M. Khoshnaw, E. A. Rakha, T. M. Abdel-Fatah, et al., “Loss of Dicer expression is associated with breast cancer progression and recurrence,” Breast Cancer Research and Treatment, vol. 135, pp. 403–413, 2012.
  137. L. Li, X. Xie, J. Luo, et al., “Targeted expression of miR-34a using the T-VISA system suppresses breast cancer cell growth and invasion,” Molecular Therapy, vol. 20, pp. 2326–2334, 2012.
  138. J. Tang, A. Ahmad, and F. H. Sarkar, “The role of microRNAs in breast cancer migration, invasion and metastasis,” International Journal of Molecular Sciences, vol. 13, pp. 13414–13437, 2012.
  139. S. F. Tavazoie, C. Alarcón, T. Oskarsson et al., “Endogenous human microRNAs that suppress breast cancer metastasis,” Nature, vol. 451, no. 7175, pp. 147–152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  140. S. Pavlides, A. Tsirigos, G. Migneco et al., “The autophagic tumor stroma model of cancer: role of oxidative stress and ketone production in fueling tumor cell metabolism,” Cell Cycle, vol. 9, no. 17, pp. 3485–3505, 2010. View at Publisher · View at Google Scholar · View at Scopus
  141. K. J. Png, M. Yoshida, X. H. F. Zhang et al., “MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer,” Genes and Development, vol. 25, no. 3, pp. 226–231, 2011. View at Publisher · View at Google Scholar · View at Scopus
  142. F. M. Buffa, C. Camps, L. Winchester, et al., “microRNA-associated progression pathways and potential therapeutic targets identified by integrated mRNA and microRNA expression profiling in breast cancer,” Cancer Research, vol. 71, pp. 5635–5645, 2011.
  143. S. Nilsson, C. Moller, K. Jirstrom, et al., “Downregulation of miR-92a is associated with aggressive breast cancer features and increased tumour macrophage infiltration,” PLoS One, vol. 7, article e36051, 2012.
  144. X. Zhou, C. Marian, K. H. Makambi, et al., “MicroRNA-9 as potential biomarker for breast cancer local recurrence and tumor estrogen receptor status,” PLoS One, vol. 7, article e39011, 2012.
  145. H. Peurala, D. Greco, T. Heikkinen, et al., “MiR-34a expression has an effect for lower risk of metastasis and associates with expression patterns predicting clinical outcome in breast cancer,” PLoS One, vol. 6, article e26122, 2011.
  146. A. Bronisz, J. Godlewski, J. A. Wallace, et al., “Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320,” Nature Cell Biology, vol. 14, pp. 159–167, 2012.
  147. D. Ota, K. Mimori, T. Yokobori et al., “Identification of recurrence-related microRNAs in the bone marrow of breast cancer patients,” International Journal of Oncology, vol. 38, no. 4, pp. 955–962, 2011. View at Publisher · View at Google Scholar · View at Scopus
  148. A. Bergamaschi and B. S. Katzenellenbogen, “Tamoxifen downregulation of miR-451 increases 14-3-3zeta and promotes breast cancer cell survival and endocrine resistance,” Oncogene, vol. 31, pp. 39–47, 2012.
  149. M. B. Lyng, A. V. Laenkholm, R. Sokilde, K. H. Gravgaard, T. Litman, and H. J. Ditzel, “Global microRNA expression profiling of high-risk ER+ breast cancers from patients receiving adjuvant tamoxifen mono-therapy: a DBCG study,” PLoS One, vol. 7, article e36170, 2012.
  150. C. W. Cheng, H. W. Wang, C. W. Chang, et al., “MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer,” Breast Cancer Research and Treatment, vol. 134, pp. 1081–1093, 2012.
  151. X. Wu, G. Somlo, Y. Yu, et al., “De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer,” Journal of Translational Medicine, vol. 10, article 42, 2012.
  152. H. Wang, G. Tan, L. Dong, et al., “Circulating MiR-125b as a marker predicting chemoresistance in breast cancer,” PLoS One, vol. 7, article e34210, 2012.
  153. V. J. Cookson, M. A. Bentley, B. V. Hogan, et al., “Circulating microRNA profiles reflect the presence of breast tumours but not the profiles of microRNAs within the tumours,” Cellular Oncology, vol. 35, pp. 301–308, 2012.
  154. H. T. Mouridsen, P. Lønning, M. W. Beckmann et al., “Use of aromatase inhibitors and bisphosphonates as an anticancer therapy in postmenopausal breast cancer,” Expert Review of Anticancer Therapy, vol. 10, no. 11, pp. 1825–1836, 2010. View at Publisher · View at Google Scholar · View at Scopus
  155. E. C. Yiannakopoulou, “Pharmacogenomics of breast cancer targeted therapy: focus on recent patents,” Recent Patents on DNA & Gene Sequences, vol. 6, pp. 33–46, 2012.
  156. A. Ahmad, A. S. Farhan, S. Singh, and S. M. Hadi, “DNA breakage by resveratrol and Cu(II): reaction mechanism and bacteriophage inactivation,” Cancer Letters, vol. 154, no. 1, pp. 29–37, 2000. View at Publisher · View at Google Scholar · View at Scopus
  157. A. Ahmad, F. A. Syed, S. Singh, and S. M. Hadi, “Prooxidant activity of resveratrol in the presence of copper ions: Mutagenicity in plasmid DNA,” Toxicology Letters, vol. 159, no. 1, pp. 1–12, 2005. View at Publisher · View at Google Scholar · View at Scopus
  158. S. I. Khan, J. Zhao, I. A. Khan, L. A. Walker, and A. K. Dasmahapatra, “Potential utility of natural products as regulators of breast cancer-associated aromatase promoters,” Reproductive Biology and Endocrinology, vol. 9, article 91, 2011.
  159. J. C. Doughty, “When to start an aromatase inhibitor: now or later?” Journal of Surgical Oncology, vol. 103, no. 7, pp. 730–738, 2011. View at Publisher · View at Google Scholar · View at Scopus
  160. E. Bria, P. Carlini, F. Cuppone, V. Vaccaro, M. Milella, and F. Cognetti, “Early recurrence risk: aromatase inhibitors versus tamoxifen,” Expert Review of Anticancer Therapy, vol. 10, no. 8, pp. 1239–1253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  161. S. Gluck and F. Gorouhi, “Clinical and economic benefits of aromatase inhibitor therapy in early-stage breast cancer,” American Journal of Health-System Pharmacy, vol. 68, pp. 1699–1706, 2011.
  162. R. D. Rao and M. A. Cobleigh, “Adjuvant endocrine therapy for breast cancer,” Oncology, vol. 26, pp. 541–547, 2012.
  163. S. F. Dent, R. Gaspo, M. Kissner, and K. I. Pritchard, “Aromatase inhibitor therapy: toxicities and management strategies in the treatment of postmenopausal women with hormone-sensitive early breast cancer,” Breast Cancer Research and Treatment, vol. 126, no. 2, pp. 295–310, 2011. View at Publisher · View at Google Scholar · View at Scopus
  164. J. J. Body, “Increased fracture rate in women with breast cancer: a review of the hidden risk,” BMC Cancer, vol. 11, article 384, 2011.
  165. T. Petit, P. Dufour, and I. Tannock, “A critical evaluation of the role of aromatase inhibitors as adjuvant therapy for postmenopausal women with breast cancer,” Endocrine-Related Cancer, vol. 18, no. 3, pp. R79–R89, 2011. View at Publisher · View at Google Scholar · View at Scopus
  166. E. Amir, B. Seruga, S. Niraula, L. Carlsson, and A. Ocana, “Toxicity of adjuvant endocrine therapy in postmenopausal breast cancer patients: a systematic review and meta-analysis,” Journal of the National Cancer Institute, vol. 103, pp. 1299–1309, 2011.
  167. R. E. Coleman and E. V. McCloskey, “Bisphosphonates in oncology,” Bone, vol. 49, no. 1, pp. 71–76, 2011. View at Publisher · View at Google Scholar · View at Scopus
  168. P. Hadji, J. J. Body, M. S. Aapro et al., “Practical guidance for the management of aromatase inhibitor-associated bone loss,” Annals of Oncology, vol. 19, no. 8, pp. 1407–1416, 2008. View at Publisher · View at Google Scholar · View at Scopus
  169. R. Wong and P. J. Wiffen, “Bisphosphonates for the relief of pain secondary to bone metastases.,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD002068, 2002. View at Scopus
  170. M. Aapro, P. A. Abrahamsson, J. J. Body et al., “Guidance on the use of bisphosphonates in solid tumours: recommendations of an international expert panel,” Annals of Oncology, vol. 19, no. 3, pp. 420–432, 2008. View at Publisher · View at Google Scholar · View at Scopus
  171. M. Gnant and P. Hadji, “Prevention of bone metastases and management of bone health in early breast cancer,” Breast Cancer Research, vol. 12, article 216, 2010.
  172. M. C. Winter, I. Holen, and R. E. Coleman, “Exploring the anti-tumour activity of bisphosphonates in early breast cancer,” Cancer Treatment Reviews, vol. 34, no. 5, pp. 453–475, 2008. View at Publisher · View at Google Scholar · View at Scopus
  173. I. Holen and R. E. Coleman, “Bisphosphonates as treatment of bone metastases,” Current Pharmaceutical Design, vol. 16, no. 11, pp. 1262–1271, 2010. View at Scopus
  174. T. Powles, A. Paterson, E. McCloskey et al., “Reduction in bone relapse and improved survival with oral clodronate for adjuvant treatment of operable breast cancer,” Breast Cancer Research, vol. 8, no. 3, article R13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  175. M. Gnant, B. Mlineritsch, W. Schippinger et al., “Endocrine therapy plus zoledronic acid in premenopausal breast cancer,” The New England Journal of Medicine, vol. 360, no. 7, pp. 679–691, 2009. View at Publisher · View at Google Scholar · View at Scopus
  176. R. T. Chlebowski and N. Col, “Bisphosphonates and breast cancer incidence and recurrence,” Breast Disease, vol. 33, pp. 93–101, 2011.
  177. F. H. Sarkar, Y. Li, Z. Wang, and D. Kong, “The role of nutraceuticals in the regulation of Wnt and Hedgehog signaling in cancer,” Cancer and Metastasis Reviews, vol. 29, no. 3, pp. 383–394, 2010. View at Publisher · View at Google Scholar · View at Scopus
  178. A. Ahmad, S. Padhye, and F. H. Sarkar, “Role of novel nutraceuticals Garcinol, Plumbagin and Mangiferin in the prevention and therapy of human malignancies: mechanisms of anticancer activity,” in Nutraceuticals and Cancer, F. H. Sarkar, Ed., pp. 179–199, Springer, New York, NY, USA, 2012.
  179. A. Ahmad, W. A. Sakr, and K. M. W. Rahman, “Mechanisms and therapeutic implications of cell death induction by indole compounds,” Cancers, vol. 3, pp. 2955–2974, 2011.
  180. S. F. Asad, S. Singh, A. Ahmad, and S. M. Hadi, “Flavonoids: antioxidants in diet and potential anticancer agents,” Medical Science Research, vol. 26, no. 11, pp. 723–728, 1998. View at Scopus
  181. A. Ahmad, W. A. Sakr, and K. M. W. Rahman, “Anticancer properties of indole compounds: mechanism of apoptosis induction and role in chemotherapy,” Current Drug Targets, vol. 11, no. 6, pp. 652–666, 2010. View at Publisher · View at Google Scholar · View at Scopus
  182. J. Y. Dong and L. Q. Qin, “Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies,” Breast Cancer Research and Treatment, vol. 125, no. 2, pp. 315–323, 2011. View at Publisher · View at Google Scholar · View at Scopus
  183. Y. Li, M. S. Wicha, S. J. Schwartz, and D. Sun, “Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds,” Journal of Nutritional Biochemistry, vol. 22, no. 9, pp. 799–806, 2011. View at Publisher · View at Google Scholar · View at Scopus
  184. J. Kim, X. Zhang, K. M. Rieger-Christ et al., “Suppression of Wnt signaling by the green tea compound (-)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells: requirement of the transcriptional repressor HBP1,” Journal of Biological Chemistry, vol. 281, no. 16, pp. 10865–10875, 2006. View at Publisher · View at Google Scholar · View at Scopus
  185. A. Ahmad, W. A. Sakr, and K. M. Rahman, “Novel targets for detection of cancer and their modulation by chemopreventive natural compounds,” Frontiers in Bioscience, vol. 4, pp. 410–425, 2012.
  186. A. Ahmad, S. H. Sarkar, A. Aboukameel, et al., “Anticancer action of garcinol in vitro and in vivo is in part mediated through inhibition of STAT-3 signaling,” Carcinogenesis, vol. 33, pp. 2450–2456, 2012.
  187. B. Bao, A. Ahmad, Y. Li, et al., “Targeting CSCs within the tumor microenvironment for cancer therapy: a potential role of mesenchymal stem cells,” Expert Opinion on Therapeutic Targets, vol. 16, pp. 1041–1054, 2012.
  188. Y. Li, M. Y. Maitah, A. Ahmad, D. Kong, B. Bao, and F. H. Sarkar, “Targeting the Hedgehog signaling pathway for cancer therapy,” Expert Opinion on Therapeutic Targets, vol. 16, pp. 49–66, 2012.
  189. M. F. Ullah, A. Ahmad, H. Zubair et al., “Soy isoflavone genistein induces cell death in breast cancer cells through mobilization of endogenous copper ions and generation of reactive oxygen species,” Molecular Nutrition and Food Research, vol. 55, no. 4, pp. 553–559, 2011. View at Publisher · View at Google Scholar · View at Scopus
  190. A. Vyas, P. Dandawate, S. Padhye, A. Ahmad, and F. Sarkar, “Perspectives on new synthetic curcumin analogs and their potential anticancer properties,” Current Pharmaceutical Design. In press.
  191. Y. Li, T. G. Vandenboom, D. Kong et al., “Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells,” Cancer Research, vol. 69, no. 16, pp. 6704–6712, 2009. View at Publisher · View at Google Scholar · View at Scopus
  192. B. Bao, S. Ali, D. Kong et al., “Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and pten in pancreatic cancer,” PLoS ONE, vol. 6, no. 3, article e17850, 2011. View at Publisher · View at Google Scholar · View at Scopus
  193. B. Bao, Y. Li, A. Ahmad, et al., “Targeting CSC-related miRNAs for cancer therapy by natural agents,” Current Drug Targets, vol. 13, no. 14, pp. 1858–1868, 2012.
  194. A. Ahmad, S. H. Sarkar, B. Bitar, et al., “Garcinol regulates EMT and Wnt signaling pathways in vitro and in vivo, leading to anticancer activity against breast cancer cells,” Molecular Cancer Therapeutics, vol. 11, pp. 2193–2201, 2012.
  195. Z. Wang, Y. Li, D. Kong et al., “Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway,” Cancer Research, vol. 69, no. 6, pp. 2400–2407, 2009. View at Publisher · View at Google Scholar · View at Scopus
  196. Z. Wang, Y. Li, A. Ahmad et al., “Targeting miRNAs involved in cancer stem cell and EMT regulation: an emerging concept in overcoming drug resistance,” Drug Resistance Updates, vol. 13, no. 4-5, pp. 109–118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  197. V. Raviraj, H. Zhang, H. Y. Chien, L. Cole, E. W. Thompson, and L. Soon, “Dormant but migratory tumour cells in desmoplastic stroma of invasive ductal carcinomas,” Clinical and Experimental Metastasis, vol. 29, pp. 273–292, 2012.