About this Journal Submit a Manuscript Table of Contents
ISRN Oncology
Volume 2013 (2013), Article ID 362467, 8 pages
http://dx.doi.org/10.1155/2013/362467
Review Article

Neoadjuvant Treatment in Patients with HER2-Positive Breast Cancer

11st Department of Oncology, Faculty of Medicine, Comenius University, Spitalska 24, 813 72 Bratislava, Slovakia
2Department of Clinical Oncology, St. Elizabeth Cancer Institute, Heydukova 10, 812 50 Bratislava, Slovakia

Received 16 April 2013; Accepted 7 May 2013

Academic Editors: G. C. Fraizer, H.-W. Lo, G. Metro, and G. Schiavon

Copyright © 2013 Katarina Sevcikova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Yarden and M. X. Sliwkowski, “Untangling the ErbB signalling network,” Nature Reviews Molecular Cell Biology, vol. 2, no. 2, pp. 127–137, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Tzahar, H. Waterman, X. Chen et al., “A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor,” Molecular and Cellular Biology, vol. 16, no. 10, pp. 5276–5287, 1996.
  3. J. A. Zell, W. Y. Tsang, T. H. Taylor, R. S. Mehta, and H. Anton-Culver, “Prognostic impact of human epidermal growth factor-like receptor 2 and hormone receptor status in inflammatory breast cancer (IBC): analysis of 2,014 IBC patient cases from the California Cancer Registry,” Breast Cancer Research, vol. 11, no. 1, article R9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. J. S. Ross, E. A. Slodkowska, W. F. Symmans, L. Pusztai, P. M. Ravdin, and G. N. Hortobagyi, “The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine,” Oncologist, vol. 14, no. 4, pp. 320–368, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Rubin and Y. Yarden, “The basic biology of HER2,” Annals of Oncology, vol. 12, supplement 1, pp. S3–S8, 2001.
  6. H. D. Bear, “Indications for neoadjuvant chemotherapy for breast cancer,” Seminars in Oncology, vol. 25, no. 2, pp. 3–12, 1998. View at Scopus
  7. G. N. Hortobagyi, G. R. Blumenschein, W. Spanos et al., “Multimodal treatment of locoregionally advanced breast cancer,” Cancer, vol. 51, no. 5, pp. 763–768, 1983. View at Scopus
  8. G. N. Hortobagyi, F. C. Ames, A. U. Buzdar et al., “Management of stage III primary breast cancer with primary chemotherapy, surgery, and radiation therapy,” Cancer, vol. 62, no. 12, pp. 2507–2516, 1988. View at Scopus
  9. G. N. Hortobagyi, “Comprehensive management of locally advanced breast cancer,” Cancer, vol. 66, no. 6, pp. 1387–1391, 1990. View at Scopus
  10. B. Fisher, J. Bryant, N. Wolmark et al., “Effect of preoperative chemotherapy on the outcome of women with operable breast cancer,” Journal of Clinical Oncology, vol. 16, no. 8, pp. 2672–2685, 1998. View at Scopus
  11. N. Wolmark, J. Wang, E. Mamounas, J. Bryant, and B. Fisher, “Preoperative chemotherapy in patients with operable breast cancer: nine-year results from national surgical adjuvant breast and bowel project B-18,” Journal of the National Cancer Institute, Monographs, no. 30, pp. 96–102, 2001. View at Scopus
  12. H. D. Bear, S. Anderson, A. Brown et al., “The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubicin and cyclophosphamide: preliminary results from national surgical adjuvant breast and bowel project protocol B-27,” Journal of Clinical Oncology, vol. 21, no. 22, pp. 4165–4174, 2003.
  13. J. A. van der Hage, C. J. H. van de Velde, J. P. Julien, M. Tubiana-Hulin, C. Vandervelden, and L. Duchateau, “Preoperative chemotherapy in primary operable breast cancer: results from the european organization for research and treatment of cancer trial 10902,” Journal of Clinical Oncology, vol. 19, no. 22, pp. 4224–4237, 2001. View at Scopus
  14. J. S. Mieog, J. A. van der Hage, and C. J. van de Velde, “Preoperative chemotherapy for women with operable breast cancer,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD005002, 2007. View at Scopus
  15. H. M. Kuerer, L. A. Newman, T. L. Smith et al., “Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy,” Journal of Clinical Oncology, vol. 17, no. 2, pp. 460–469, 1999. View at Scopus
  16. S. V. S. Deo, M. Bhutani, N. K. Shukla, V. Raina, G. K. Rath, and J. Purkayasth, “Randomized trial comparing neo-adjuvant versus adjuvant chemotherapy in operable locally advanced breast cancer (T4b N0-2 MO),” Journal of Surgical Oncology, vol. 84, no. 4, pp. 192–197, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Kaufmann, G. von minckwitz, H. D. Bear et al., “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Annals of Oncology, vol. 18, no. 12, pp. 1927–1934, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. A. Molina, J. Codony-Servat, J. Albanell, F. Rojo, J. Arribas, and J. Baselga, “Trastuzumab (Herceptin), a humanized anti-HER2 receptor monoclonal antibody, inhibits basal and activated HER2 ectodomain cleavage in breast cancer cells,” Cancer Research, vol. 61, no. 12, pp. 4744–4749, 2001. View at Scopus
  19. J. Baselga, J. Albanell, M. A. Molina, and J. Arribas, “Mechanism of action of trastuzumab and scientific update,” Seminars in Oncology, vol. 28, no. 5, supplement 16, pp. 4–11, 2001. View at Scopus
  20. N. L. Spector and K. L. Blackwell, “Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer,” Journal of Clinical Oncology, vol. 27, no. 34, pp. 5838–5847, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Xia, R. J. Mullin, B. R. Keith et al., “Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways,” Oncogene, vol. 21, no. 41, pp. 6255–6263, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Ghosh, A. Narasanna, S. E. Wang et al., “Trastuzumab has preferential activity against breast cancers driven by HER2 homodimers,” Cancer Research, vol. 71, no. 5, pp. 1871–1882, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. D. N. Amin, N. Sergina, D. Ahuja et al., “Resiliency and vulnerability in the HER2-HER3 tumorigenic driver,” Science Translational Medicine, vol. 2, no. 16, Article ID 16ra7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Baselga and S. M. Swain, “Novel anticancer targets: revisiting HER2 and discovering HER3,” Nature Reviews Cancer, vol. 9, no. 7, pp. 463–475, 2009. View at Publisher · View at Google Scholar
  25. D. Graus-Porta, R. R. Beerli, J. M. Daly, and N. E. Hynes, “ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling,” EMBO Journal, vol. 16, no. 7, pp. 1647–1655, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. S. T. Lee-Hoeflich, L. Crocker, E. Yao et al., “A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy,” Cancer Research, vol. 68, no. 14, pp. 5878–5887, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. M. C. Franklin, K. D. Carey, F. F. Vajdos, D. J. Leahy, A. M. de Vos, and M. X. Sliwkowski, “Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex,” Cancer Cell, vol. 5, no. 4, pp. 317–328, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. J. B. Hughes, C. Berger, M. S. Rødland, M. Hasmann, E. Stang, and I. H. Madshus, “Pertuzumab increases epidermal growth factor receptor down-regulation by counteracting epidermal growth factor receptor-ErbB2 heterodimerization,” Molecular Cancer Therapeutics, vol. 8, no. 7, pp. 1885–1892, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Citri, K. B. Skaria, and Y. Yarden, “The deaf and the dumb: the biology of ErbB-2 and ErbB-3,” Experimental Cell Research, vol. 284, no. 1, pp. 54–65, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Von Minckwitz, S. Loibl, and M. Untch, “What is the current standard of care for antiHER2 neoadjuvant therapy in breast cancer?” Oncology, vol. 26, no. 1, pp. 20–26, 2012.
  31. A. U. Buzdar, N. K. Ibrahim, D. Francis et al., “Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer,” Journal of Clinical Oncology, vol. 23, no. 16, pp. 3676–3685, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. A. U. Buzdar, V. Valero, N. K. Ibrahim et al., “Neoadjuvant therapy with paclitaxel followed by 5-fluorouracil, epirubicin, and cyclophosphamide chemotherapy and concurrent trastuzumab in human epidermal growth factor receptor 2-positive operable breast cancer: an update of the initial randomized study population and data of additional patients treated with the same regimen,” Clinical Cancer Research, vol. 13, no. 1, pp. 228–233, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Gianni, W. Eiermann, V. Semiglazov et al., “Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort,” The Lancet, vol. 375, no. 9712, pp. 377–384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. G. von Minckwitz, M. Rezai, S. Loibl et al., “Capecitabine in addition to anthracycline- and taxane-based neoadjuvant treatment in patients with primary breast cancer: phase III GeparQuattro study,” Journal of Clinical Oncology, vol. 28, no. 12, pp. 2015–2023, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Untch, M. Rezai, S. Loibl et al., “Neoadjuvant treatment with trastuzumab in HER2-positive breast cancer: results from the GeparQuattro study,” Journal of Clinical Oncology, vol. 28, no. 12, pp. 2024–2031, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Untch, A. P. Fasching, E. G. Konecny, et al., “Pathological complete response after neoadjuvant chemotherapy + trastuzumab treatment predicts survival and detects a patient subgroup at high need for improvement of anti-HER2 therapy. Three year median follow up data of the TECHNO trial,” Journal of Clinical Oncology, vol. 29, no. 25, pp. 3351–3357, 2011. View at Publisher · View at Google Scholar
  37. J. Baselga, I. Bradbury, H. Eidtmann et al., “Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial,” The Lancet, vol. 379, no. 9816, pp. 633–640, 2012. View at Publisher · View at Google Scholar
  38. M. Untch, S. Loibl, J. Bischoff et al., “Lapatinib versus trastuzumab in combination with neoadjuvant anthracycline-taxane-based chemotherapy (GeparQuinto, GBG 44): a randomised phase 3 trial,” The Lancet Oncology, vol. 13, no. 2, pp. 135–144, 2012. View at Publisher · View at Google Scholar
  39. V. Guarneri, A. Frassoldati, A. Bottini et al., “Preoperative chemotherapy plus trastuzumab, lapatinib or both in HER2 positive operable breast cancer: results of the randomized phase II CHER-LOB study,” Journal of Clinical Oncology, vol. 30, no. 16, pp. 1989–1995, 2012. View at Publisher · View at Google Scholar
  40. L. Gianni, T. Pienkowski, Y. H. Im, et al., “Abstract S3-2: neoadjuvant pertuzumab (P) and trastuzumab (H): antitumor and safety analysis of a randomized phase II study (“NeoSphere”),” Cancer Research, vol. 70, no. 24, supplement 2, 2010. View at Publisher · View at Google Scholar
  41. A. Schneeweiss, S. Chia, T. Hickish, et al., “Neoadjuvant pertuzumab and trastuzumab concurrent or sequential with an anthracycline-containing or concurrent with an anthracycline-free standard regimen: a randomized phase II study (TRYPHAENA),” Cancer Research, vol. 71, supplement 24, article 112s, 2011.
  42. V. Guarneri, K. Broglio, S. W. Kau et al., “Prognostic value of pathologic complete response after primary chemotherapy in relation to hormone receptor status and other factors,” Journal of Clinical Oncology, vol. 24, no. 7, pp. 1037–1044, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. G. von Minckwitz, M. Kaufmann, S. Kümmel, et al., “Integrated meta-analysis on 6402 patients with early breast cancer receiving neoadjuvant anthracyclinetaxane +/- trastuzumab containing chemotherapy,” Cancer Research, vol. 69, no. 2, supplement 1, 2009. View at Publisher · View at Google Scholar
  44. G. von Minckwitz, M. Kaufmann, S. Kuemmel, et al., “Correlation of various pathologic complete response (pCR) definitions with long-term outcome and the prognostic value of pCR in various breast cancer subtypes: results from the German neoadjuvant meta-analysis,” Journal of Clinical Oncology, vol. 29, abstract 1028, 2011.
  45. M. F. Rimawi, L. S. Wiechmann, Y. C. Wang et al., “Reduced dose and intermittent treatment with lapatinib and trastuzumab for potent blockade of the HER pathway in HER2/neu-overexpressing breast tumor xenografts,” Clinical Cancer Research, vol. 17, no. 6, pp. 1351–1361, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. G. Bianchini, A. Prat, M. Pickl, et al., “Response to neoadjuvant trastuzumab and chemotherapy in ER+ and ER- HER2-positive breast cancers: gene expression analysis,” Journal of Clinical Oncology, vol. 29, abstract 529, 2011.
  47. B. Dave, I. Migliaccio, M. C. Gutierrez et al., “Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2—overexpressing locally advanced breast cancers,” Journal of Clinical Oncology, vol. 29, no. 2, pp. 166–173, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Berns, H. M. Horlings, B. T. Hennessy et al., “A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer,” Cancer Cell, vol. 12, no. 4, pp. 395–402, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Nagata, K. H. Lan, X. Zhou et al., “PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients,” Cancer Cell, vol. 6, no. 2, pp. 117–127, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. I. Witzel, S. Loibl, G. von Minckwitz et al., “Monitoring serum HER2 levels during neoadjuvant trastuzumab treatment within the GeparQuattro trial,” Breast Cancer Research and Treatment, vol. 123, no. 2, pp. 437–445, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. I. Witzel, S. Loibl, G. von Minckwitz et al., “Predictive value of HER2 serum levels in patients treated with lapatinib or trastuzumab—a translational project in the neoadjuvant GeparQuinto trial,” The British Journal of Cancer, vol. 107, no. 6, pp. 956–960, 2012. View at Publisher · View at Google Scholar
  52. E. J. Jung, L. Santarpia, J. Kim et al., “Plasma microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients,” Cancer, vol. 118, no. 10, pp. 2603–2614, 2012. View at Publisher · View at Google Scholar
  53. K. Tamura, C. Shimizu, T. Hojo et al., “FcγR2A and 3A polymorphisms predict clinical outcome of trastuzumab in both neoadjuvant and metastatic settings in patients with HER2-positive breast cancer,” Annals of Oncology, vol. 22, no. 6, pp. 1302–1307, 2011. View at Publisher · View at Google Scholar
  54. F. J. Esteva, J. Wang, F. Lin et al., “CD40 signaling predicts response to preoperative trastuzumab and concomitant paclitaxel followed by 5-fluorouracil, epirubicin, and cyclophosphamide in HER-2-overexpressing breast cancer,” Breast Cancer Research, vol. 9, no. 6, article R87, 2007. View at Scopus
  55. F. A. Holmes, Y. M. Nagarwala, V. A. Espina, et al., “Correlation of molecular effects and pathologic complete response to preoperative lapatinib and trastuzumab, separately and combined prior to neoadjuvant breast cancer chemotherapy,” Journal of Clinical Oncology, vol. 29, abstract 506, 2011.
  56. S. Loibl, J. M. Bruey, G. von Minckwitz, et al., “Validation of p95 as a predictive marker for trastuzumab-based therapy in primary HER2-positive breast cancer: a translational investigation from the neoadjuvant GeparQuattro study,” Journal of Clinical Oncology, vol. 29, abstract 530, 2011.
  57. J. Huober, S. Loibl, M. Untch, et al., “New molecular biomarkers for resistance to trastuzumab-based in primary HER2 positive breast cancer—a translational investigation from the neoadjuvant GeparQuattro study,” Cancer Research, vol. 70, supplement 24, abstract PD02-06, 2010.
  58. T. M. Suter, M. Procter, D. J. van Veldhuisen et al., “Trastuzumab-associated cardiac adverse effects in the herceptin adjuvant trial,” Journal of Clinical Oncology, vol. 25, no. 25, pp. 3859–3865, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. E. Tan-Chiu, G. Yothers, E. Romond et al., “Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31,” Journal of Clinical Oncology, vol. 23, no. 31, pp. 7811–7819, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. D. J. Slamon, B. Leyland-Jones, S. Shak et al., “Use of chemotherapy plus a monoclonal antibody against her2 for metastatic breast cancer that overexpresses HER2,” The New England Journal of Medicine, vol. 344, no. 11, pp. 783–792, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Bianchi, J. Albanell, W. Eiermann et al., “Pilot trial of trastuzumab starting with or after the doxorubicin component of a doxorubicin plus paclitaxel regimen for women with HER2-positive advanced breast cancer,” Clinical Cancer Research, vol. 9, no. 16, pp. 5944–5951, 2003. View at Scopus
  62. M. Untch, M. Muscholl, S. Tjulandin et al., “First-line trastuzumab plus epirubicin and cyclophosphamide therapy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer: cardiac safety and efficacy data from the herceptin, cyclophosphamide, and epirubicin (HERCULES) trial,” Journal of Clinical Oncology, vol. 28, no. 9, pp. 1473–1480, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Seidman, C. Hudis, M. K. Pierri et al., “Cardiac dysfunction in the trastuzumab clinical trials experience,” Journal of Clinical Oncology, vol. 20, no. 5, pp. 1215–1221, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. V. Guarneri, D. J. Lenihan, V. Valero et al., “Long-term cardiac tolerability of trastuzumab in metastatic breast cancer: the M.D. Anderson cancer center experience,” Journal of Clinical Oncology, vol. 24, no. 25, pp. 4107–4115, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. C. E. Geyer Jr., J. Bryant, G. Yothers, et al., “Update of cardiac dysfunction on NSABP B-31: a randomized trial of subsequential AC→paclitaxel versus AC→paclitaxel with trastuzumab,” Journal of Clinical Oncology, vol. 24, no. 23, supplement, A581, 2006.
  66. J. Staaf, M. Ringnér, J. Vallon-Christersson et al., “Identification of subtypes in human epidermal growth factor receptor 2-positive breast cancer reveals a gene signature prognostic of outcome,” Journal of Clinical Oncology, vol. 28, no. 11, pp. 1813–1820, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. D. A. Yardley, E. Raefsky, R. Castillo et al., “Phase II study of neoadjuvant weekly nab-paclitaxel and carboplatin, with bevacizumab and trastuzumab, as treatment for women with locally advanced HER2+ breast cancer,” Clinical Breast Cancer, vol. 11, no. 5, pp. 297–305, 2011. View at Publisher · View at Google Scholar