About this Journal Submit a Manuscript Table of Contents
ISRN Oncology
Volume 2013 (2013), Article ID 420597, 8 pages
http://dx.doi.org/10.1155/2013/420597
Research Article

Endocytic Adaptor Protein Epsin Is Elevated in Prostate Cancer and Required for Cancer Progression

1Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
2Biochemistry and Molecular Biology Department, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA

Received 7 February 2013; Accepted 27 February 2013

Academic Editors: Y. Akiyama, J. Bentel, Z. S. Guo, and Y. Yu

Copyright © 2013 Kandice L. Tessneer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Jung, Y. Shiozawa, J. Wang et al., “Prevalence of prostate cancer metastases after intravenous inoculation provides clues into the molecular basis of dormancy in the bone marrow microenvironment,” Neoplasia, vol. 14, no. 5, pp. 429–439, 2012. View at Publisher · View at Google Scholar
  2. Y. Chen and H. I. Scher, “Prostate cancer in 2011: hitting old targets better and identifying new targets,” Nature Reviews Clinical Oncology, vol. 9, no. 2, pp. 70–72, 2012. View at Publisher · View at Google Scholar
  3. R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics, 2012,” CA Cancer Journal for Clinicians, vol. 62, no. 1, pp. 10–29, 2012. View at Publisher · View at Google Scholar
  4. Z. I. Khamis, K. A. Iczkowski, and Q. X. A. Sang, “Metastasis suppressors in human benign prostate, intraepithelial neoplasia, and invasive cancer: their prospects as therapeutic agents,” Medicinal Research Reviews, vol. 32, no. 5, pp. 1026–1077, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Ramaswamy, K. N. Ross, E. S. Lander, and T. R. Golub, “A molecular signature of metastasis in primary solid tumors,” Nature Genetics, vol. 33, no. 1, pp. 49–54, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. Z. Wang, Y. Li, S. Banerjee et al., “Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-κB signaling pathways,” Journal of Cellular Biochemistry, vol. 109, no. 4, pp. 726–736, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. K. Oosterhoff, J. A. Grootegoed, and L. J. Blok, “Expression profiling of androgen-dependent and -independent LNCaP cells: EGF versus androgen signalling,” Endocrine-Related Cancer, vol. 12, no. 1, pp. 135–148, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. J. K. Oosterhoff, L. C. Kühne, J. A. Grootegoed, and L. J. Blok, “EGF signalling in prostate cancer cell lines is inhibited by a high expression level of the endocytosis protein REPS2,” International Journal of Cancer, vol. 113, no. 4, pp. 561–567, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Wang, W. Yu, Y. Cai, C. Ren, and M. M. Ittmann, “Altered fibroblast growth factor receptor 4 stability promotes prostate cancer progression,” Neoplasia, vol. 10, no. 8, pp. 847–856, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Gupta, K. Iljin, H. Sara et al., “FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal transition in human prostate cancer cells,” Cancer Research, vol. 70, no. 17, pp. 6735–6745, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. K. G. Bache, T. Slagsvold, and H. Stenmark, “Defective downregulation of receptor tyrosine kinases in cancer,” EMBO Journal, vol. 23, no. 14, pp. 2707–2712, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Barriere, C. Nemes, D. Lechardeur, M. Khan-Mohammad, K. Fruh, and G. L. Lukacs, “Molecular basis of oligoubiquitin-dependent internalization of membrane proteins in mammalian cells,” Traffic, vol. 7, no. 3, pp. 282–297, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Chen and P. De Camilli, “The association of epsin with ubiquitinated cargo along the endocytic pathway is negatively regulated by its interaction with clathrin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 8, pp. 2766–2771, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Chen, S. Fre, V. I. Slepnev et al., “Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis,” Nature, vol. 394, no. 6695, pp. 793–797, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. M. G. J. Ford, I. G. Mills, B. J. Peter et al., “Curvature of clathrin-coated pits driven by epsin,” Nature, vol. 419, no. 6905, pp. 361–366, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. M. J. Hawryluk, P. A. Keyel, S. K. Mishra, S. C. Watkins, J. E. Heuser, and L. M. Traub, “Epsin 1 is a polyubiquitin-selective clathrin-associated sorting protein,” Traffic, vol. 7, no. 3, pp. 262–281, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J. A. Rosenthal, H. Chen, V. I. Slepnev et al., “The epsins define a family of proteins that interact with components of the clathrin coat and contain a new protein module,” Journal of Biological Chemistry, vol. 274, no. 48, pp. 33959–33965, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. S. C. Shih, D. J. Katzmann, J. D. Schnell, M. Sutanto, S. D. Emr, and L. Hicke, “Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis,” Nature Cell Biology, vol. 4, no. 5, pp. 389–393, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Sugiyama, S. Kishida, K. Chayama, S. Koyama, and A. Kikuchi, “Ubiquitin-interacting motifs of epsin are involved in the regulation of insulin-dependent endocytosis,” Journal of Biochemistry, vol. 137, no. 3, pp. 355–364, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Wendland, “Epsins: adaptors in endocytosis?” Nature Reviews Molecular Cell Biology, vol. 3, no. 12, pp. 971–977, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Ko, S. Paradise, H. Chen et al., “Selective high-level expression of epsin 3 in gastric parietal cells, where it is localized at endocytic sites of apical canaliculi,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 50, pp. 21511–21516, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Chen, G. Ko, A. Zatti et al., “Embryonic arrest at midgestation and disruption of Notch signaling produced by the absence of both epsin 1 and epsin 2 in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 33, pp. 13838–13843, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Pasula, X. Cai, Y. Dong et al., “Endothelial epsin deficiency decreases tumor growth by enhancing VEGF signaling,” Journal of Clinical Investigation, vol. 122, no. 12, pp. 4424–4438, 2012. View at Publisher · View at Google Scholar
  24. R. S. Kerbel, “Tumor angiogenesis,” New England Journal of Medicine, vol. 358, no. 19, pp. 2039–2049, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. B. G. Coon, J. Burgner, J. H. Camonis, and R. C. Aguilar, “The Epsin family of endocytic adaptors promotes fibrosarcoma migration and invasion,” Journal of Biological Chemistry, vol. 285, no. 43, pp. 33073–33081, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. B. G. Coon, D. M. DiRenzo, S. F. Konieczny, and R. C. Aguilar, “Epsins' novel role in cancer cell invasion,” Communicative & Integrative Biology, vol. 4, no. 1, pp. 95–97, 2011.
  27. D. Mukherjee, B. G. Coon, D. F. Edwards et al., “The yeast endocytic protein Epsin 2 functions in a cell-division signaling pathway,” Journal of Cell Science, vol. 122, no. 14, pp. 2453–2463, 2009.
  28. B. Tanos and E. Rodriguez-Boulan, “The epithelial polarity program: machineries involved and their hijacking by cancer,” Oncogene, vol. 27, no. 55, pp. 6939–6957, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Rossé, S. L'Hoste, N. Offner, A. Picard, and J. Camonis, “RLIP, an effector of the Ral GTPases, is a platform for Cdk1 to phosphorylate Epsin during the switch off of endocytosis in mitosis,” Journal of Biological Chemistry, vol. 278, no. 33, pp. 30597–30604, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. R. C. Aguilar, S. A. Longhi, J. D. Shaw et al., “Epsin N-terminal homology domains perform an essential function regulating Cdc42 through binding Cdc42 GTPase-activating proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 11, pp. 4116–4121, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. N. M. Mollberg, G. Steinert, M. Aigner et al., “Overexpression of RalBP1 in colorectal cancer is an independent predictor of poor survival and early tumor relapse,” Cancer Biology and Therapy, vol. 13, no. 8, pp. 695–701, 2012. View at Publisher · View at Google Scholar
  32. J. S. Horoszewicz, S. S. Leong, and E. Kawinski, “LNCaP model of human prostatic carcinoma,” Cancer Research, vol. 43, no. 4, pp. 1809–1818, 1983. View at Scopus
  33. N. M. Greenberg, F. DeMayo, D. Medina et al., “Prostate cancer in a transgenic mouse,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 8, pp. 3439–3443, 1995.
  34. J. R. Gingrich, R. J. Barrios, M. W. Kattan, H. S. Nahm, M. J. Finegold, and N. M. Greenberg, “Androgen-independent prostate cancer progression in the TRAMP model,” Cancer Research, vol. 57, no. 21, pp. 4687–4691, 1997. View at Scopus
  35. J. R. Gingrich, R. J. Barrios, R. A. Morton et al., “Metastatic prostate cancer in a transgenic mouse,” Cancer Research, vol. 56, no. 18, pp. 4096–4102, 1996. View at Scopus
  36. J. R. Gingrich and N. M. Greenberg, “A transgenic mouse prostate cancer model,” Toxicologic Pathology, vol. 24, no. 4, pp. 502–504, 1996. View at Scopus
  37. G. N. Thalmann, P. E. Anezinis, S. M. Chang et al., “Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer,” Cancer Research, vol. 54, no. 10, pp. 2577–2581, 1994. View at Scopus
  38. H. C. Wu, J. T. Hsieh, M. E. Gleave, N. M. Brown, S. Pathak, and L. W. K. Chung, “Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: role of bone stromal cells,” International Journal of Cancer, vol. 57, no. 3, pp. 406–412, 1994. View at Publisher · View at Google Scholar · View at Scopus
  39. J. R. Gingrich, R. J. Barrios, B. A. Foster, and N. M. Greenberg, “Pathologic progression of autochthonous prostate cancer in the TRAMP model,” Prostate Cancer and Prostatic Diseases, vol. 2, no. 2, pp. 70–75, 1999. View at Scopus