About this Journal Submit a Manuscript Table of Contents
ISRN Oncology
Volume 2013 (2013), Article ID 483687, 22 pages
http://dx.doi.org/10.1155/2013/483687
Review Article

Vitamin D: Are We Ready to Supplement for Breast Cancer Prevention and Treatment?

1Department of Medicine, Division of Hematology/Oncology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
2Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
3Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA

Received 8 January 2013; Accepted 29 January 2013

Academic Editors: C.-X. Pan, S. Patel, A. E. Pinto, and T. Yokoe

Copyright © 2013 Katherine D. Crew. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Fisher, J. P. Costantino, D. L. Wickerham et al., “Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 study,” Journal of the National Cancer Institute, vol. 90, no. 18, pp. 1371–1388, 1998. View at Scopus
  2. V. G. Vogel, J. P. Costantino, D. L. Wickerham et al., “Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: The NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial,” Journal of the American Medical Association, vol. 295, no. 23, pp. 2727–2741, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. P. E. Goss, J. N. Ingle, J. E. Ales-Martinez, et al., “Exemestane for breast-cancer prevention in postmenopausal women,” The New England Journal of Medicine, vol. 364, pp. 2381–2391, 2011.
  4. G. P. Webb, Dietary Supplements and Functional Foods, Blackwell, Oxford, UK, 2nd edition, 2011.
  5. F. L. Apperly, “The relation of solar radiation to cancer mortality in North America,” Cancer Research, vol. 1, pp. 191–195, 1941.
  6. G. P. Studzinski and D. C. Moore, “Sunlight—can it prevent as well as cause cancer?” Cancer Research, vol. 55, no. 18, pp. 4014–4022, 1995. View at Scopus
  7. E. D. Gorham, F. C. Garland, and C. F. Garland, “Sunlight and breast cancer incidence in the USSR,” International Journal of Epidemiology, vol. 19, no. 4, pp. 820–824, 1990. View at Scopus
  8. F. C. Garland, C. F. Garland, E. D. Gorham, and J. F. Young, “Geographic variation in breast cancer mortality in the United States: a hypothesis involving exposure to solar radiation,” Preventive Medicine, vol. 19, no. 6, pp. 614–622, 1990. View at Publisher · View at Google Scholar · View at Scopus
  9. W. J. Blot, J. F. Fraumeni, and B. J. Stone, “Geographic patterns of breast cancer in the United States,” Journal of the National Cancer Institute, vol. 59, no. 5, pp. 1407–1411, 1977. View at Scopus
  10. W. Chen, M. Clements, B. Rahman, S. Zhang, Y. Qiao, and B. K. Armstrong, “Relationship between cancer mortality/incidence and ambient ultraviolet B irradiance in China,” Cancer Causes and Control, vol. 21, no. 10, pp. 1701–1709, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. Institute of Medicine, Dietary Reference Intakes For Calcium and Vitamin D, National Academic Press, Washington, DC, USA, 2011.
  12. R. R. Eitenmiller, L. Ye, and W. O. Landen, Vitamin Analysis for the Health and Food Sciences, CRC Press, Boca Raton, Fla, USA, 2nd edition, 2008.
  13. E. Giovannucci, “The epidemiology of vitamin D and cancer incidence and mortality: a review (United States),” Cancer Causes and Control, vol. 16, no. 2, pp. 83–95, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Nesby-O'Dell, K. S. Scanlon, M. E. Cogswell et al., “Hypovitaminosis D prevalence and determinants among African American and white women of reproductive age: Third National Health and Nutrition Examination Survey, 1988–1994,” American Journal of Clinical Nutrition, vol. 76, no. 1, pp. 187–192, 2002. View at Scopus
  15. E. Giovannucci, “Vitamin D status and cancer incidence and mortality,” Advances in Experimental Medicine and Biology, vol. 624, pp. 31–42, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Zittermann, “Vitamin D: cholecalciferol,” in Vitamins in the Prevention of Human Disease, W. Hermann and R. Obeid, Eds., pp. 363–395, De Gruyter, Homburg, Germany, 2011.
  17. M. Hewison and J. S. Adams, “Extra-renal 1alpha-hydroxylase activity and human disease,” in Vitamin D, D. Feldman, J. W. Pike, and F. H. Glorieux, Eds., pp. 1379–1400, Elsevier, San Diego, Calif, USA, 2nd edition, 2005.
  18. H. L. Newmark, R. P. Heaney, and P. A. Lachance, “Should calcium and vitamin D be added to the current enrichment program for cereal-grain products?” American Journal of Clinical Nutrition, vol. 80, no. 2, pp. 264–270, 2004. View at Scopus
  19. G. G. Schwartz, L. W. Whitlatch, T. C. Chen, B. L. Lokeshwar, and M. F. Holick, “Human prostate cells synthesize 1,25-dihydroxyvitamin D3 from 25- hydroxyvitamin D3,” Cancer Epidemiology Biomarkers and Prevention, vol. 7, no. 5, pp. 391–395, 1998. View at Scopus
  20. M. J. Larriba, N. Valle, S. Alvarez, and A. Munoz, “Vitamin D3 and colorectal cancer,” in Hormonal Carcinovenesis V, J. J. Li, S. A. Li, S. Mohla, H. Rochefort, and T. Maudelonde, Eds., pp. 271–280, Springer, New York, NY, USA, 2008.
  21. D. Feldman, P. J. Malloy, A. V. Krishnan, and E. Balint, “Vitamin D: biology, action, and clinical implications,” in Osteoporosis, R. Marcus, D. Feldman, D. A. Nelson, and C. J. Rosen, Eds., Academic, San Diego, Calif, USA, 3rd edition, 2008.
  22. S. Swami, A. V. Krishnan, D. M. Peehl, and D. Feldman, “Genistein potentiates the growth inhibitory effects of 1,25- dihydroxyvitamin D3 in DU145 human prostate cancer cells: role of the direct inhibition of CYP24 enzyme activity,” Molecular and Cellular Endocrinology, vol. 241, no. 1-2, pp. 49–61, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Masuda and G. Jones, “Promise of vitamin D analogues in the treatment of hyperproliferative conditions,” Molecular Cancer Therapeutics, vol. 5, no. 4, pp. 797–808, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Carlberg and T. W. Dunlop, “The impact of chromatin organization of vitamin D target genes,” Anticancer Research, vol. 26, no. 4, pp. 2637–2645, 2006. View at Scopus
  25. K. W. Colston and C. M. Hansen, “Mechanisms implicated in the growth regulatory effects of vitamin D in breast cancer,” Endocrine-Related Cancer, vol. 9, no. 1, pp. 45–59, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Welsh, “Vitamin D and breast cancer: insights from animal models,” The American Journal of Clinical Nutrition, vol. 80, pp. 1721S–1724S, 2004.
  27. D. Matthews, E. LaPorta, G. M. Zinser, C. J. Narvaez, and J. Welsh, “Genomic vitamin D signaling in breast cancer: insights from animal models and human cells,” Journal of Steroid Biochemistry and Molecular Biology, vol. 121, no. 1-2, pp. 362–367, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Cordes, D. Fischer, M. Thill, S. Becker, M. Friedrich, and D. Salehin, “Vitamin D-1α-hydroxylase and vitamin D-24-hydroxylase in benign and malign breast tissue,” European Journal of Gynaecological Oncology, vol. 31, no. 2, pp. 151–155, 2010. View at Scopus
  29. N. Lopes, B. Sousa, D. Martins et al., “Alterations in Vitamin D signalling and metabolic pathways in breast cancer progression: a study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions Vitamin D pathways unbalanced in breast lesions,” BMC Cancer, vol. 10, article 483, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. J. Larriba and A. Munoz, “Mechanisms of resistance to vitamin D action in human cancer cells,” in Vitamin D: Physiology, Molecular Biology, and Clinical Applications, M. F. Holick, Ed., pp. 325–333, Humana Press, New York, NY, USA, 2010.
  31. J. Thorne and M. J. Campbell, “The molecular cancer biology of the VDR,” in Vitamin D and Cancer, D. L. Trump and C. S. Johnson, Eds., pp. 25–52, Springer, New York, NY, USA, 2011.
  32. M. D. Althuis, J. H. Fergenbaum, M. Garcia-Closas, L. A. Brinton, M. P. Madigan, and M. E. Sherman, “Etiology of hormone receptor-defined breast cancer: a systematic review of the literature,” Cancer Epidemiology Biomarkers and Prevention, vol. 13, no. 10, pp. 1558–1568, 2004. View at Scopus
  33. X. Peng, M. Hawthorne, A. Vaishnav, R. St-Arnaud, and R. G. Mehta, “25-Hydroxyvitamin D3 is a natural chemopreventive agent against carcinogen induced precancerous lesions in mouse mammary gland organ culture,” Breast Cancer Research and Treatment, vol. 113, no. 1, pp. 31–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Swami, A. V. Krishnan, J. Y. Wang et al., “Dietary vitamin D(3) and 1, 25-dihydroxyvitamin D(3) (calcitriol) exhibit equivalent anticancer activity in mouse xenograft models of breast and prostate cancer,” in Endocrinology, vol. 153, pp. 2576–2587, 2012.
  35. H. J. Lee, S. Paul, N. Atalla et al., “Gemini vitamin D analogues inhibit estrogen receptor-positive and estrogen receptor-negative mammary tumorigenesis without hypercalcemic toxicity,” Cancer Prevention Research, vol. 1, no. 6, pp. 476–484, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Welsh, J. A. Wietzke, G. M. Zinser, B. Byrne, K. Smith, and C. J. Narvaez, “Vitamin D-3 receptor as a target for breast cancer prevention,” Journal of Nutrition, vol. 133, no. 7, pp. 2425S–2433S, 2003. View at Scopus
  37. K. K. Deeb, D. L. Trump, and C. S. Johnson, “Vitamin D signalling pathways in cancer: potential for anticancer therapeutics,” Nature Reviews Cancer, vol. 7, no. 9, pp. 684–700, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Stoica, M. Saceda, A. Fakhro, H. B. Solomon, B. D. Fenster, and M. B. Martin, “Regulation of estrogen receptor-alpha gene expression by 1, 25-dihydroxyvitamin D in MCF-7 cells,” in Journal of Cellular Biochemistry, vol. 75, pp. 640–651, 1999.
  39. S. Swami, A. V. Krishnan, and D. Feldman, “1α,25-Dihydroxyvitamin D3 down-regulates estrogen receptor abundance and suppresses estrogen actions in MCF-7 human breast cancer cells,” Clinical Cancer Research, vol. 6, no. 8, pp. 3371–3379, 2000. View at Scopus
  40. A. V. Krishnan, S. Swami, L. Peng, J. Wang, J. Moreno, and D. Feldman, “Tissue-selective regulation of aromatase expression by calcitriol: implications for breast cancer therapy,” Endocrinology, vol. 151, no. 1, pp. 32–42, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Matsumoto, Y. Iino, Y. Koibuchi et al., “Antitumor effect of 22-oxacalcitriol on estrogen receptor-negative MDA-MB-231 tumors in athymic mice,” Oncology Reports, vol. 6, no. 2, pp. 349–352, 1999. View at Scopus
  42. E. A. Hussain, R. R. Mehta, R. Ray, T. K. Das Gupta, and R. G. Mehta, “Efficacy and mechanism of action of 1alpha-hydroxy-24-ethyl-cholecalciferol (1alpha[OH]D5) in breast cancer prevention and therapy,” Recent Results in Cancer Research, vol. 164, pp. 393–411, 2003. View at Scopus
  43. A. V. Krishnan and D. Feldman, “Mechanisms of the anti-cancer and anti-inflammatory actions of vitamin D,” Annual Review of Pharmacology and Toxicology, vol. 51, pp. 311–336, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Moreno, A. V. Krishnan, S. Swami, L. Nonn, D. M. Peehl, and D. Feldman, “Regulation of prostaglandin metabolism by calcitriol attenuates growth stimulation in prostate cancer cells,” Cancer Research, vol. 65, no. 17, pp. 7917–7925, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. A. M. H. Brodie, Q. Lu, B. J. Long et al., “Aromatase and COX-2 expression in human breast cancers,” Journal of Steroid Biochemistry and Molecular Biology, vol. 79, no. 1-5, pp. 41–47, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. R. W. Brueggemeier, A. L. Quinn, M. L. Parrett, F. S. Joarder, R. E. Harris, and F. M. Robertson, “Correlation of aromatase and cyclooxygenase gene expression in human breast cancer specimens,” Cancer Letters, vol. 140, no. 1-2, pp. 27–35, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Ben-Shoshan, S. Amir, D. T. Dang, L. H. Dang, Y. Weisman, and N. J. Mabjeesh, “1α,25-dihydroxyvitamin D3 (Calcitriol) inhibits hypoxia-inducible factor-1/vascular endothelial growth factor pathway in human cancer cells,” Molecular Cancer Therapeutics, vol. 6, no. 4, pp. 1433–1439, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. I. Chung, G. Han, M. Seshadri et al., “Role of vitamin D receptor in the antiproliferative effects of calcitriol in tumor-derived endothelial cells and tumor angiogenesis in vivo,” Cancer Research, vol. 69, no. 3, pp. 967–975, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. D. J. Mantell, P. E. Owens, N. J. Bundred, E. B. Mawer, and A. E. Canfield, “1α,25-Dihydroxyvitamin D3 inhibits angiogenesis in vitro and in vivo,” Circulation Research, vol. 87, no. 3, pp. 214–220, 2000. View at Scopus
  50. Y. Ma, W. D. Yu, P. A. Hershberger et al., “1α,25-Dihydroxyvitamin D3 potentiates cisplatin antitumor activity by p73 induction in a squamous cell carcinoma model,” Molecular Cancer Therapeutics, vol. 7, no. 9, pp. 3047–3055, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Chaudhary, S. Sundaram, C. Gennings, H. Carter, and D. A. Gewirtz, “The vitamin D3 analog, ILX-23-7553, enhances the response to Adriamycin and irradiation in MCF-7 breast tumor cells,” Cancer Chemotherapy and Pharmacology, vol. 47, no. 5, pp. 429–436, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. D. L. Trump, K. K. Deeb, and C. S. Johnson, “Vitamin D: considerations in the continued development as an agent for cancer prevention and therapy,” Cancer Journal, vol. 16, no. 1, pp. 1–9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Van Der Rhee, J. W. Coebergh, and E. De Vries, “Sunlight, vitamin D and the prevention of cancer: a systematic review of epidemiological studies,” European Journal of Cancer Prevention, vol. 18, no. 6, pp. 458–475, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Simard, J. Vobecky, and J. S. Vobecky, “Vitamin D deficiency and cancer of the breast: an unprovocative ecological hypothesis,” Canadian Journal of Public Health, vol. 82, no. 5, pp. 300–303, 1991. View at Scopus
  55. N. Potischman, C. A. Swanson, R. J. Coates et al., “Intake of food groups and associated micronutrients in relation to risk of early-stage breast cancer,” in International Journal of Cancer, vol. 82, pp. 315–321, 1999.
  56. F. Levi, C. Pasche, F. Lucchini, and C. L. Vecchia, “Dietary intake of selected micronutrients and breast-cancer risk,” International Journal of Cancer, vol. 91, no. 2, pp. 260–263, 2001. View at Scopus
  57. S. Abbas, J. Linseisen, and J. Chang-Claude, “Dietary vitamin D and calcium intake and premenopausal breast cancer risk in a german case-control study,” Nutrition and Cancer, vol. 59, no. 1, pp. 54–61, 2007. View at Scopus
  58. M. Rossi, J. K. McLaughlin, P. Lagiou et al., “Vitamin D intake and breast cancer risk: a case-control study in Italy,” Annals of Oncology, vol. 20, no. 2, pp. 374–378, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. L. N. Anderson, M. Cotterchio, R. Vieth, and J. A. Knight, “Vitamin D and calcium intakes and breast cancer risk in pre- and postmenopausal women,” American Journal of Clinical Nutrition, vol. 91, no. 6, pp. 1699–1707, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. J. A. Knight, M. Lesosky, H. Barnett, J. M. Raboud, and R. Vieth, “Vitamin D and reduced risk of breast cancer: a population-based case-control study,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 3, pp. 422–429, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. T. Kawase, K. Matsuo, T. Suzuki et al., “Association between vitamin D and calcium intake and breast cancer risk according to menopausal status and receptor status in Japan,” Cancer Science, vol. 101, no. 5, pp. 1234–1240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. M. S. Lee, Y. C. Huang, M. L. Wahlqvist et al., “Vitamin d decreases risk of breast cancer in premenopausal women of normal weight in subtropical Taiwan,” Journal of Epidemiology, vol. 21, no. 2, pp. 87–94, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. K. M. Blackmore, M. Lesosky, H. Barnett, J. M. Raboud, R. Vieth, and J. A. Knight, “Vitamin D from dietary intake and sunlight exposure and the risk of hormone-receptor-defined breast cancer,” American Journal of Epidemiology, vol. 168, no. 8, pp. 915–924, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. E. M. John, G. G. Schwartz, D. M. Dreon, and J. Koo, “Vitamin D and breast cancer risk: The NHANES I epidemiologic follow-up study, 1971–1975 to 1992,” Cancer Epidemiology Biomarkers and Prevention, vol. 8, no. 5, pp. 399–406, 1999. View at Scopus
  65. M. H. Shin, M. D. Holmes, S. E. Hankinson, K. Wu, G. A. Colditz, and W. C. Willett, “Intake of dairy products, calcium, and vitamin D and risk of breast cancer,” Journal of the National Cancer Institute, vol. 94, no. 17, pp. 1301–1311, 2002. View at Scopus
  66. A. Lindsay Frazier, L. Li, E. Cho, W. C. Willett, and G. A. Colditz, “Adolescent diet and risk of breast cancer,” Cancer Causes and Control, vol. 15, no. 1, pp. 73–82, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. M. L. McCullough, C. Rodriguez, W. R. Diver et al., “Dairy, calcium, and vitamin D intake and postmenopausal breast cancer risk in the cancer prevention study II nutrition cohort,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 12, pp. 2898–2904, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Lin, J. E. Manson, I. M. Lee, N. R. Cook, J. E. Buring, and S. M. Zhang, “Intakes of calcium and vitamin D and breast cancer risk in women,” Archives of Internal Medicine, vol. 167, no. 10, pp. 1050–1059, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. K. Robien, G. J. Cutler, and D. Lazovich, “Vitamin D intake and breast cancer risk in postmenopausal women: The Iowa Women's Health Study,” Cancer Causes and Control, vol. 18, no. 7, pp. 775–782, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. H. Kuper, L. Yang, S. Sandin, M. Lof, H. O. Adami, and E. Weiderpass, “Prospective study of solar exposure, dietary vitamin D intake, and risk of breast cancer among middle-aged women,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 9, pp. 2558–2561, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. K. Edvardsen, M. B. Veierød, M. Brustad, T. Braaten, O. Engelsen, and E. Lund, “Vitamin D-effective solar UV radiation, dietary vitamin D and breast cancer risk,” International Journal of Cancer, vol. 128, no. 6, pp. 1425–1433, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. C. A. Gonzalez, E. Riboli, K. Overvad et al., “Diet and cancer prevention: contributions from the European Prospective Investigation into Cancer and Nutrition (EPIC) study,” European Journal of Cancer, vol. 46, no. 14, pp. 2555–2562, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. P. Engel, G. Fagherazzi, S. Mesrine, M. C. Boutron-Ruault, and F. Clavel-Chapelon, “Joint effects of dietary vitamin d and sun exposure on breast cancer risk: results from the French E3N cohort,” Cancer Epidemiology Biomarkers and Prevention, vol. 20, no. 1, pp. 187–195, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. P. Chen, P. Hu, D. Xie, Y. Qin, F. Wang, and H. Wang, “Meta-analysis of vitamin D, calcium and the prevention of breast cancer,” Breast Cancer Research and Treatment, vol. 121, no. 2, pp. 469–477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. H. Reichel, H. P. Koeffler, and A. W. Normal, “The role of the vitamin D endocrine system in health and disease,” The New England Journal of Medicine, vol. 320, no. 15, pp. 980–991, 1989. View at Scopus
  76. M. F. Holick, “Vitamin D status: measurement, interpretation, and clinical application,” Annals of Epidemiology, vol. 19, no. 2, pp. 73–78, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. L. Yin, N. Grandi, E. Raum, U. Haug, V. Arndt, and H. Brenner, “Meta-analysis: serum vitamin D and breast cancer risk,” European Journal of Cancer, vol. 46, no. 12, pp. 2196–2205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Gandini, M. Boniol, J. Haukka et al., “Meta-analysis of observational studies of serum 25-hydroxyvitamin D levels and colorectal, breast and prostate cancer and colorectal adenoma,” International Journal of Cancer, vol. 128, no. 6, pp. 1414–1424, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Abbas, J. Linseisen, T. Slanger et al., “Serum 25-hydroxyvitamin D and risk of post-menopausal breast cancer—results of a large case-control study,” Carcinogenesis, vol. 29, no. 1, pp. 93–99, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Abbas, A. Nieters, J. Linseisen et al., “Vitamin D receptor gene polymorphisms and haplotypes and postmenopausal breast cancer risk,” Breast Cancer Research, vol. 10, no. 2, article no. R31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Abbas, J. Linseisen, T. Slanger et al., “The Gc2 allele of the vitamin D binding protein is associated with a decreased postmenopausal breast cancer risk, independent of the vitamin D status,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 6, pp. 1339–1343, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. D. M. Freedman, S. C. Chang, R. T. Falk et al., “Serum levels of vitamin D metabolites and breast cancer risk in the prostate, lung, colorectal, and ovarian cancer screening trial,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 4, pp. 889–894, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Abbas, J. Chang-Claude, and J. Linseisen, “Plasma 25-hydroxyvitamin D and premenopausal breast cancer risk in a German case-control study,” International Journal of Cancer, vol. 124, no. 1, pp. 250–255, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. K. D. Crew, E. Shane, S. Cremers, D. J. McMahon, D. Irani, and D. L. Hershman, “High prevalence of vitamin D deficiency despite supplementation in premenopausal women with breast cancer undergoing adjuvant chemotherapy,” Journal of Clinical Oncology, vol. 27, no. 13, pp. 2151–2156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. M. L. McCullough, V. L. Stevens, R. Patel et al., “Serum 25-hydroxyvitamin D concentrations and postmenopausal breast cancer risk: a nested case control study in the Cancer Prevention Study-II Nutrition Cohort,” Breast Cancer Research, vol. 11, no. 4, article no. R64, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. L. Rejnmark, A. Tietze, P. Vestergaard et al., “Reduced prediagnostic 25-hydroxyvitamin D levels in women with breast cancer: a nested case-control study,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 10, pp. 2655–2660, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Almquist, A. G. Bondeson, L. Bondeson, J. Malm, and J. Banjer, “Serum levels of vitamin D, PTH and calcium and breast cancer risk a prospective nested case-control study,” International Journal of Cancer, vol. 127, no. 9, pp. 2159–2168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. P. Engel, G. Fagherazzi, A. Boutten et al., “Serum 25(OH) vitamin D and risk of breast cancer: a nested case-control study from the French E3N cohort,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 9, pp. 2341–2350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. K. D. Crew, M. D. Gammon, S. E. Steck, et al., “Association between plasma 25-hydroxyvitamin D and breast cancer risk,” in Cancer Prevention Research, vol. 2, pp. 598–604, 2009.
  90. R. T. Chlebowski, K. C. Johnson, C. Kooperberg et al., “Calcium plus vitamin D supplementation and the risk of breast cancer,” Journal of the National Cancer Institute, vol. 100, no. 22, pp. 1581–1591, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. W. B. Grant, “Effect of interval between serum draw and follow-up period on relative risk of cancer incidence with respect to 25-hydroxyvitamin D level: implications for meta-analyses and setting vitamin D guidelines,” Dermatoendocrinol, vol. 3, pp. 199–204, 2011.
  92. J. N. Hofmann, K. Yu, R. L. Horst, R. B. Hayes, and M. P. Purdue, “Long-term variation in serum 25-hydroxyvitamin d concentration among participants in the prostate, lung, colorectal, and ovarian cancer screening trial,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 4, pp. 927–931, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. R. Jorde, M. Sneve, M. Hutchinson, N. Emaus, Y. Figenschau, and G. Grimnes, “Tracking of serum 25-Hydroxyvitamin D levels during 14 years in a population-based study and during 12 months in an intervention study,” American Journal of Epidemiology, vol. 171, no. 8, pp. 903–908, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. J. M. Lappe, D. Travers-Gustafson, K. M. Davies, R. R. Recker, and R. P. Heaney, “Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial,” American Journal of Clinical Nutrition, vol. 85, no. 6, pp. 1586–1591, 2007. View at Scopus
  95. W. Zhou, R. S. Heist, G. Liu et al., “Circulating 25-hydroxyvitamin D levels predict survival in early-stage non-small-cell lung cancer patients,” Journal of Clinical Oncology, vol. 25, no. 5, pp. 479–485, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. E. R. Bertone-Johnson, W. Y. Chen, M. F. Holick et al., “Plasma 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D and risk of breast cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 8, pp. 1991–1997, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Chung, E. M. Balk, M. Brendel et al., “Vitamin D and calcium: a systematic review of health outcomes,” Evidence Report, no. 183, pp. 1–420, 2009. View at Scopus
  98. International Agency for Research on Cancer, Vitamin D and Cancer—A Report of the IARC Working Group on Vitamin D, World Health Organization Press, Lyon, France, 2008.
  99. O. P. Heinonen and D. Albanes, “The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers,” The New England Journal of Medicine, vol. 330, no. 15, pp. 1029–1035, 1994. View at Publisher · View at Google Scholar · View at Scopus
  100. D. Albanes, O. P. Heinonen, P. R. Taylor et al., “α-tocopherol and β-carotene supplements and lung cancer incidence in the alpha-tocopherol, beta-carotene cancer prevention study: effects of base- line characteristics and study compliance,” Journal of the National Cancer Institute, vol. 88, no. 21, pp. 1560–1570, 1996. View at Publisher · View at Google Scholar · View at Scopus
  101. G. S. Omenn, G. Goodman, M. Thornquist et al., “The β-carotene and retinol efficacy trial (CARET) for chemoprevention of lung cancer in high risk populations: smokers and asbestos-exposed workers,” Cancer Research, vol. 54, no. 7, pp. 2038s–2043s, 1994. View at Scopus
  102. B. F. Cole, J. A. Baron, R. S. Sandler et al., “Folic acid for the prevention of colorectal adenomas: a randomized clinical trial,” Journal of the American Medical Association, vol. 297, no. 21, pp. 2351–2359, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. E. A. Klein, I. M. Thompson Jr., C. M. Tangen, et al., “Vitamin E and the risk of prostate cancer: the selenium and vitamin E Cancer Prevention Trial (SELECT),” The Journal of the American Medical Association, vol. 306, pp. 1549–1556, 2011.
  104. V. A. McCormack and I. Dos Santos Silva, “Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 6, pp. 1159–1169, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. N. F. Boyd, H. Guo, L. J. Martin et al., “Mammographic density and the risk and detection of breast cancer,” The New England Journal of Medicine, vol. 356, no. 3, pp. 227–236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. N. F. Boyd, G. A. Lockwood, J. W. Byng, D. L. Tritchler, and M. J. Yaffe, “Mammographic densities and breast cancer risk,” Cancer Epidemiology Biomarkers and Prevention, vol. 7, no. 12, pp. 1133–1144, 1998. View at Scopus
  107. N. F. Boyd, J. W. Byng, R. A. Jong et al., “Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study,” Journal of the National Cancer Institute, vol. 87, no. 9, pp. 670–675, 1995. View at Scopus
  108. P. Tehranifar, D. Reynolds, J. Flom et al., “Reproductive and menstrual factors and mammographic density in African American, Caribbean, and white women,” Cancer Causes and Control, vol. 22, no. 4, pp. 599–610, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. J. Cuzick, J. Warwick, E. Pinney et al., “Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: a nested case-control study,” Journal of the National Cancer Institute, vol. 103, no. 9, pp. 744–752, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. L. Yaghjyan, G. A. Colditz, and B. Drake, “Vitamin D and mammographic breast density: a systematic review,” Cancer Causes and Control, vol. 23, pp. 1–13, 2012.
  111. J. A. Knight, C. M. Vachon, R. A. Vierkant, R. Vieth, J. R. Cerhan, and T. A. Sellers, “No association between 25-hydroxyvitamin D and mammographic density,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 10, pp. 1988–1992, 2006. View at Publisher · View at Google Scholar · View at Scopus
  112. J. Brisson, S. Bérubé, C. Diorio, M. Sinotte, M. Pollak, and B. Mâsse, “Synchronized seasonal variations of mammographic breast density and plasma 25-hydroxyvitamin D,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 5, pp. 929–933, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. A. K. Green, S. E. Hankinson, E. R. Bertone-Johnson, and R. M. Tamimi, “Mammographic density, plasma vitamin D levels and risk of breast cancer in postmenopausal women,” International Journal of Cancer, vol. 127, no. 3, pp. 667–674, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. W. Chai, G. Maskarinec, and R. V. Cooney, “Serum 25-hydroxyvitamin D levels and mammographic density among premenopausal women in a multiethnic population,” European Journal of Clinical Nutrition, vol. 64, no. 6, pp. 652–654, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. M. L. Neuhouser, L. Bernstein, B. W. Hollis et al., “Serum vitamin D and breast density in breast cancer survivors,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 2, pp. 412–417, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. C. M. Vachon, L. H. Kushi, J. R. Cerhan, C. C. Kuni, and T. A. Sellers, “Association of diet and mammographic breast density in the Minnesota breast cancer family cohort,” Cancer Epidemiology Biomarkers and Prevention, vol. 9, no. 2, pp. 151–160, 2000. View at Scopus
  117. S. Bérubé, C. Diorio, B. Mâsse et al., “Vitamin D and calcium intakes from food or supplements and mammographic breast density,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 7, pp. 1653–1659, 2005. View at Publisher · View at Google Scholar · View at Scopus
  118. C. Diorio, S. Bérubé, C. Byrne et al., “Influence of insulin-like growth factors on the strength of the relation of vitamin D and calcium intakes to mammographic breast density,” Cancer Research, vol. 66, no. 1, pp. 588–597, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. L. A. Colangelo, B. C. H. Chiu, P. Lopez et al., “A pilot study of vitamin D, calcium, and percent breast density in Hispanic women,” Nutrition Research, vol. 26, no. 1, pp. 11–15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. C. A. Thomson, L. A. Arendell, R. L. Bruhn et al., “Pilot study of dietary influences on mammographic density in pre- and postmenopausal Hispanic and non-Hispanic white women,” Menopause, vol. 14, no. 2, pp. 243–250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. E. R. Bertone-Johnson, R. T. Chlebowski, J. E. Manson et al., “Dietary vitamin D and calcium intake and mammographic density in postmenopausal women,” Menopause, vol. 17, no. 6, pp. 1152–1160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  122. M. Tseng, C. Byrne, K. A. Evers, and M. B. Daly, “Dietary intake and breast density in high-risk women: a cross-sectional study,” Breast Cancer Research, vol. 9, no. 5, article R72, 2007. View at Scopus
  123. G. Mishra, V. McCormack, D. Kuh, R. Hardy, A. Stephen, and I. Dos Santos Silva, “Dietary calcium and vitamin D intakes in childhood and throughout adulthood and mammographic density in a British birth cohort,” British Journal of Cancer, vol. 99, no. 9, pp. 1539–1543, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. G. Masala, D. Ambrogetti, M. Assedi, D. Giorgi, M. R. Del Turco, and D. Palli, “Dietary and lifestyle determinants of mammographic breast density: a longitudinal study in a Mediterranean population,” International Journal of Cancer, vol. 118, no. 7, pp. 1782–1789, 2006. View at Publisher · View at Google Scholar · View at Scopus
  125. S. A. Qureshi, E. Couto, M. Hilsen, S. Hofvind, A. H. Wu, and G. Ursin, “Mammographic density and intake of selected nutrients and vitamins in Norwegian women,” Nutrition and Cancer, vol. 63, pp. 1011–1020, 2011.
  126. B. L. Sprague, A. Trentham-Dietz, R. E. Gangnon, et al., “The vitamin D pathway and mammographic breast density among postmenopausal women,” Breast Cancer Research and Treatment, vol. 131, pp. 255–265, 2012.
  127. T. J. Key, P. N. Appleby, G. K. Reeves et al., “Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women,” Journal of the National Cancer Institute, vol. 95, no. 16, pp. 1218–1226, 2003. View at Scopus
  128. J. Wortsman, L. Y. Matsuoka, T. C. Chen, Z. Lu, and M. F. Holick, “Decreased bioavailability of vitamin D in obesity,” American Journal of Clinical Nutrition, vol. 72, no. 3, pp. 690–693, 2000. View at Scopus
  129. Z. Lagunova, A. C. Porojnicu, W. B. Grant, Ø. Bruland, and J. E. Moan, “Obesity and increased risk of cancer: does decrease of serum 25-hydroxyvitamin D level with increasing body mass index explain some of the association?” Molecular Nutrition and Food Research, vol. 54, no. 8, pp. 1127–1133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. E. Amir, R. S. Cecchini, P. A. Ganz, et al., “25-Hydroxy vitamin-D, obesity, and associated variables as predictors of breast cancer risk and tamoxifen benefit in NSABP-P1,” Breast Cancer Research and Treatment, vol. 133, pp. 1077–1088, 2012.
  131. E. R. Bertone-Johnson, A. McTiernan, C. A. Thomson, et al., “Vitamin D and calcium supplementation and one-year change in mammographic density in the women's health initiative calcium and vitamin D trial,” Cancer Epidemiology, Biomarkers & Prevention, vol. 21, pp. 462–473, 2012.
  132. R. R. Buras, L. M. Schumaker, F. Davoodi et al., “Vitamin D receptors in breast cancer cells,” Breast Cancer Research and Treatment, vol. 31, no. 2-3, pp. 191–202, 1994. View at Publisher · View at Google Scholar · View at Scopus
  133. N. J. Rukin and R. C. Strange, “What are the frequency, distribution, and functional effects of vitamin D receptor polymorphisms as related to cancer risk?” Nutrition Reviews, vol. 65, no. 8, pp. S96–S101, 2007. View at Scopus
  134. A. G. Uitterlinden, Y. Fang, J. B. J. Van Meurs, H. A. P. Pols, and J. P. T. M. Van Leeuwen, “Genetics and biology of vitamin D receptor polymorphisms,” Gene, vol. 338, no. 2, pp. 143–156, 2004. View at Publisher · View at Google Scholar · View at Scopus
  135. L. C. Lowe, M. Guy, J. L. Mansi et al., “Plasma 25-hydroxy vitamin D concentrations, vitamin D receptor genotype and breast cancer risk in a UK Caucasian population,” European Journal of Cancer, vol. 41, no. 8, pp. 1164–1169, 2005. View at Publisher · View at Google Scholar · View at Scopus
  136. W. Y. Chen, E. R. Bertone-Johnson, D. J. Hunter, W. C. Willett, and S. E. Hankinson, “Associations between polymorphisms in the vitamin D receptor and breast cancer risk,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 10, pp. 2335–2339, 2005. View at Publisher · View at Google Scholar · View at Scopus
  137. S. I. Berndt, J. L. Dodson, W. Y. Huang, and K. K. Nicodemus, “A systematic review of vitamin D receptor gene polymorphisms and prostate cancer risk,” Journal of Urology, vol. 175, no. 5, pp. 1613–1623, 2006. View at Publisher · View at Google Scholar · View at Scopus
  138. H. Arai, K. I. Miyamoto, Y. Taketani et al., “A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women,” Journal of Bone and Mineral Research, vol. 12, no. 6, pp. 915–921, 1997. View at Publisher · View at Google Scholar · View at Scopus
  139. M. Guy, L. C. Lowe, D. Bretherton-Watt et al., “Vitamin D receptor gene polymorphisms and breast cancer risk,” Clinical Cancer Research, vol. 10, no. 16, pp. 5472–5481, 2004. View at Publisher · View at Google Scholar · View at Scopus
  140. D. Bretherton-Watt, R. Given-Wilson, J. L. Mansi, V. Thomas, N. Carter, and K. W. Colston, “Vitamin D receptor gene polymorphisms are associated with breast cancer risk in a UK Caucasian population,” British Journal of Cancer, vol. 85, no. 2, pp. 171–175, 2001. View at Publisher · View at Google Scholar · View at Scopus
  141. S. A. Ingles, D. G. Garcia, W. Wang et al., “Vitamin D receptor genotype and breast cancer in Latinas (United States),” Cancer Causes and Control, vol. 11, no. 1, pp. 25–30, 2000. View at Scopus
  142. J. E. Curran, T. Vaughan, R. A. Lea, S. R. Weinstein, N. A. Morrison, and L. R. Griffiths, “Association of A vitamin D receptor polymorphism with sporadic breast cancer development,” International Journal of Cancer, vol. 83, pp. 723–726, 1999.
  143. E. M. John, G. G. Schwartz, J. Koo, W. Wang, and S. A. Ingles, “Sun exposure, vitamin D receptor gene polymorphisms, and breast cancer risk in a multiethnic population,” American Journal of Epidemiology, vol. 166, no. 12, pp. 1409–1419, 2007. View at Publisher · View at Google Scholar · View at Scopus
  144. M. L. McCullough, V. L. Stevens, W. R. Diver et al., “Vitamin D pathway gene polymorphisms, diet, and risk of postmenopausal breast cancer: A Nested Case-Control Study,” Breast Cancer Research, vol. 9, no. 1, article R9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  145. M. Guy, L. C. Lowe, D. Bretherton-Watt, J. L. Mansi, and K. W. Colston, “Approaches to evaluating the association of vitamin D receptor gene polymorphisms with breast cancer risk,” Recent Results in Cancer Research, vol. 164, pp. 43–54, 2003. View at Scopus
  146. S. Raimondi, H. Johansson, P. Maisonneuve, and S. Gandini, “Review and meta-analysis on vitamin D receptor polymorphisms and cancer risk,” Carcinogenesis, vol. 30, no. 7, pp. 1170–1180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  147. M. L. Slattery, “Vitamin D receptor gene (VDR) associations with cancer,” Nutrition Reviews, vol. 65, no. 8, pp. S102–S104, 2007. View at Scopus
  148. L. K. Durrin, R. W. Haile, S. A. Ingles, and G. A. Coetzee, “Vitamin D receptor 3'-untranslated region polymorphisms: lack of effect on mRNA stability,” Biochimica et Biophysica Acta, vol. 1453, no. 3, pp. 311–320, 1999. View at Publisher · View at Google Scholar · View at Scopus
  149. G. Kerr Whitfield, L. S. Remus, P. W. Jurutka et al., “Functionally relevant polymorphisms in the human nuclear vitamin D receptor gene,” Molecular and Cellular Endocrinology, vol. 177, no. 1-2, pp. 145–159, 2001. View at Publisher · View at Google Scholar · View at Scopus
  150. B. Trabert, K. E. Malone, J. R. Daling et al., “Vitamin D receptor polymorphisms and breast cancer risk in a large population-based case-control study of Caucasian and African-American women,” Breast Cancer Research, vol. 9, no. 6, article R84, 2007. View at Scopus
  151. M. Ruggiero, S. Pacini, S. Aterini, C. Fallai, C. Ruggiero, and P. Pacini, “Vitamin D receptor gene polymorphism is associated with metastatic breast cancer,” Oncology Research, vol. 10, no. 1, pp. 43–46, 1998. View at Scopus
  152. K. Köstner, N. Denzer, C. S. L. Müller, R. Klein, W. Tilgen, and J. Reichrath, “The relevance of Vitamin D Receptor (VDR) gene polymorphisms for cancer: a review of the literature,” Anticancer Research, vol. 29, no. 9, pp. 3511–3536, 2009. View at Scopus
  153. N. A. Morrison, Jian Cheng Qi, A. Tokita et al., “Prediction of bone density from vitamin D receptor alleles,” Nature, vol. 367, no. 6460, pp. 284–287, 1994. View at Publisher · View at Google Scholar · View at Scopus
  154. F. G. Hustmyer, H. F. DeLuca, and M. Peacock, “Apal, Bsml, EcoRV and Taql polymorphisms at the human vitamin D receptor gene locus in Caucasians, Blacks and Asians,” Human Molecular Genetics, vol. 2, no. 4, article 487, 1993. View at Scopus
  155. J. Ma, M. J. Stampfer, P. H. Gann et al., “Vitamin D receptor polymorphisms, circulating vitamin D metabolites, and risk of prostate cancer in United States physicians,” Cancer Epidemiology Biomarkers and Prevention, vol. 7, no. 5, pp. 385–390, 1998. View at Scopus
  156. P. Sillanpää, A. Hirvonen, V. Kataja et al., “Vitamin D receptor gene polymorphism as an important modifier of positive family history related breast cancer risk,” Pharmacogenetics, vol. 14, no. 4, pp. 239–245, 2004. View at Publisher · View at Google Scholar · View at Scopus
  157. N. Buyru, A. Tezol, E. Yosunkaya-Fenerci, and N. Dalay, “Vitamin D receptor gene polymorphisms in breast cancer,” Experimental and Molecular Medicine, vol. 35, no. 6, pp. 550–555, 2003. View at Scopus
  158. P. A. Newcomb, H. Kim, A. Trentham-Dietz, F. Farin, D. Hunter, and K. M. Egan, “Vitamin D receptor polymorphism and breast cancer risk,” Cancer Epidemiology, Biomarkers & Prevention, vol. 11, pp. 1503–1504, 2002.
  159. M. F. Hou, Y. C. Tien, G. T. Lin et al., “Association of vitamin D receptor gene polymorphism with sporadic breast cancer in Taiwanese patients,” Breast Cancer Research and Treatment, vol. 74, no. 1, pp. 1–7, 2002. View at Publisher · View at Google Scholar · View at Scopus
  160. A. M. Dunning, S. McBride, J. Gregory et al., “No association between androgen or vitamin D receptor gene polymorphisms and risk of breast cancer,” Carcinogenesis, vol. 20, no. 11, pp. 2131–2135, 1999. View at Publisher · View at Google Scholar · View at Scopus
  161. A. C. Lundin, P. Söderkvist, B. Eriksson, M. Bergman-Jungeström, and S. Wingren, “Association of breast cancer progression with a vitamin D receptor gene polymorphism,” Cancer Research, vol. 59, no. 10, pp. 2332–2334, 1999. View at Scopus
  162. C. Diorio, M. Sinotte, J. Brisson, S. Bérube, and M. Pollak, “Vitamin D pathway polymorphisms in relation to mammographic breast density,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 9, pp. 2505–2508, 2008. View at Publisher · View at Google Scholar · View at Scopus
  163. H. Li, M. J. Stampfer, J. B. W. Hollis et al., “A prospective study of plasma vitamin D metabolites, vitamin D receptor polymorphisms, and prostate cancer,” PLoS Medicine, vol. 4, no. 3, article e103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  164. K. D. Crew, M. D. Gammon, D. L. Hershman, et al., Low Serum 25-Hydroxy Vitamin D and Vitamin D Receptor Polymorphisms are Associated with Increased Breast Cancer Risk, American Society for Bone and Mineral Research, Montreal, Canada, 2008.
  165. E. M. Colin, A. E. A. M. Weel, A. G. Uitterlinden et al., “Consequences of vitamin D receptor gene polymorphisms for growth inhibition of cultured human peripheral blood mononuclear cells by 1,25-dihydroxyvitamin D3,” Clinical Endocrinology, vol. 52, no. 2, pp. 211–216, 2000. View at Scopus
  166. P. W. Jurutka, L. S. Remus, G. K. Whitfield et al., “The polymorphic N terminus in human vitamin D receptor isoforms influences transcriptional activity by modulating interaction with transcription factor IIB,” Molecular Endocrinology, vol. 14, no. 3, pp. 401–420, 2000. View at Publisher · View at Google Scholar · View at Scopus
  167. A. G. Uitterlinden, Y. Fang, J. B. J. Van Meurs, H. Van Leeuwen, and H. A. P. Pols, “Vitamin D receptor gene polymorphisms in relation to Vitamin D related disease states,” Journal of Steroid Biochemistry and Molecular Biology, vol. 89-90, pp. 187–193, 2004. View at Publisher · View at Google Scholar · View at Scopus
  168. J. M. Zmuda, J. A. Cauley, and R. E. Ferrell, “Molecular epidemiology of vitamin D receptor gene variants,” Epidemiologic Reviews, vol. 22, no. 2, pp. 203–217, 2000. View at Scopus
  169. T. E. Robsahm, S. Tretli, A. Dahlback, and J. Moan, “Vitamin D3 from sunlight may improve the prognosis of breast-, colon- and prostate cancer (Norway),” Cancer Causes and Control, vol. 15, no. 2, pp. 149–158, 2004. View at Publisher · View at Google Scholar · View at Scopus
  170. M. L. Neuhouser, B. Sorensen, B. W. Hollis et al., “Vitamin D insufficiency in a multiethnic cohort of breast cancer survivors,” American Journal of Clinical Nutrition, vol. 88, no. 1, pp. 133–139, 2008. View at Scopus
  171. P. G. Vashi, K. Trukova, C. A. Lammersfeld, D. P. Braun, and D. Gupta, “Impact of oral vitamin D supplementation on serum 25-hydroxyvitamin D levels in oncology,” Nutrition Journal, vol. 9, article 60, 2010.
  172. L. J. Peppone, A. J. Huston, M. E. Reid et al., “The effect of various vitamin D supplementation regimens in breast cancer patients,” Breast Cancer Research and Treatment, vol. 127, no. 1, pp. 171–177, 2011. View at Publisher · View at Google Scholar · View at Scopus
  173. P. J. Goodwin, M. Ennis, K. I. Pritchard, J. Koo, and N. Hood, “Prognostic effects of 25-hydroxyvitamin D levels in early breast cancer,” Journal of Clinical Oncology, vol. 27, no. 23, pp. 3757–3763, 2009. View at Publisher · View at Google Scholar · View at Scopus
  174. E. Piura, J. W. Chapman, and A. Lipton, “Serum vitamin D and prognosis of postmenopausal breast cancer patients: NCIC-CTG MA14 trial,” in Proceedings of the ASCO Annual Meeting, American Society of Clinical Oncology, 2009.
  175. E. T. Jacobs, C. A. Thomson, S. W. Flatt et al., “Vitamin D and breast cancer recurrence in the Women's Healthy Eating and Living (WHEL) Study,” American Journal of Clinical Nutrition, vol. 93, no. 1, pp. 108–117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  176. R. S. Heist, W. Zhou, Z. Wang et al., “Circulating 25-hydroxyvitamin D, VDR polymorphisms, and survival in advanced non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 26, no. 34, pp. 5596–5602, 2008. View at Publisher · View at Google Scholar · View at Scopus
  177. K. Ng, J. A. Meyerhardt, K. Wu et al., “Circulating 25-hydroxyvitamin D levels and survival in patients with colorectal cancer,” Journal of Clinical Oncology, vol. 26, no. 18, pp. 2984–2991, 2008. View at Publisher · View at Google Scholar · View at Scopus
  178. K. M. Wesa, A. Cronin, and N. H. Segal, Serum 25-Hydroxyvitamin D and Survival in Colorectacl Cancer: A Retrospective Analysis, American Society of Clinical Oncology, Chicago, Ill, USA, 2010.
  179. S. Tretli, E. Hernes, J. P. Berg, U. E. Hestvik, and T. E. Robsahm, “Association between serum 25(OH)D and death from prostate cancer,” British Journal of Cancer, vol. 100, no. 3, pp. 450–454, 2009. View at Publisher · View at Google Scholar · View at Scopus
  180. J. A. Newton-Bishop, S. Beswick, J. Randerson-Moor et al., “Serum 25-hydroxyvitamin D3 levels are associated with Breslow thickness at presentation and survival from melanoma,” Journal of Clinical Oncology, vol. 27, no. 32, pp. 5439–5444, 2009. View at Publisher · View at Google Scholar · View at Scopus
  181. C. Buttigliero, C. Monagheddu, P. Petroni et al., “Prognostic role of vitamin d status and efficacy of vitamin D supplementation in cancer patients: a systematic review,” Oncologist, vol. 16, pp. 1215–1227, 2011.
  182. W. B. Grant and A. N. Peiris, “Possible role of serum 25-hydroxyvitamin D in black-white health disparities in the United States,” Journal of the American Medical Directors Association, vol. 11, no. 9, pp. 617–628, 2010. View at Publisher · View at Google Scholar · View at Scopus
  183. S. R. T. Evans, J. Nolla, J. Hanfelt, M. Shabahang, R. J. Nauta, and I. B. Shchepotin, “Vitamin D receptor expression as a predictive marker of biological behavior in human colorectal cancer,” Clinical Cancer Research, vol. 4, no. 7, pp. 1591–1595, 1998. View at Scopus
  184. W. Seubwai, C. Wongkham, A. Puapairoj, N. Khuntikeo, and S. Wongkham, “Overexpression of vitamin D receptor indicates a good prognosis for cholangiocarcinoma: implications for therapeutics,” Cancer, vol. 109, no. 12, pp. 2497–2505, 2007. View at Publisher · View at Google Scholar · View at Scopus
  185. W. Obara, R. Konda, S. Akasaka, S. Nakamura, A. Sugawara, and T. Fujioka, “Prognostic significance of vitamin D receptor and retinoid X receptor expression in renal cell carcinoma,” Journal of Urology, vol. 178, no. 4, pp. 1497–1503, 2007. View at Publisher · View at Google Scholar · View at Scopus
  186. J. A. Halsall, J. E. Osborne, L. Potter, J. H. Pringle, and P. E. Hutchinson, “A novel polymorphism in the IA promoter region of the vitamin D receptor is associated with altered susceptibilty and prognosis in malignant melanoma,” British Journal of Cancer, vol. 91, no. 4, pp. 765–770, 2004. View at Scopus
  187. W. Obara, Y. Suzuki, K. Kato, S. Tanji, R. Konda, and T. Fujioka, “Vitamin D receptor gene polymorphisms are associated with increased risk and progression of renal cell carcinoma in a Japanese population,” International Journal of Urology, vol. 14, no. 6, pp. 483–487, 2007. View at Publisher · View at Google Scholar · View at Scopus
  188. S. Tamez, C. Norizoe, K. Ochiai et al., “Vitamin D receptor polymorphisms and prognosis of patients with epithelial ovarian cancer,” British Journal of Cancer, vol. 101, no. 12, pp. 1957–1960, 2009. View at Publisher · View at Google Scholar · View at Scopus
  189. Y. Xu, A. Shibata, J. E. McNeal, T. A. Stamey, D. Feldman, and D. M. Peehl, “Vitamin D receptor start codon polymorphism (FokI) and prostate cancer progression,” Cancer Epidemiology Biomarkers and Prevention, vol. 12, no. 1, pp. 23–27, 2003. View at Scopus
  190. H. Williams, I. J. Powell, S. J. Land et al., “Vitamin D receptor gene polymorphisms and disease free survival after radical prostatectomy,” Prostate, vol. 61, no. 3, pp. 267–275, 2004. View at Publisher · View at Google Scholar · View at Scopus
  191. M. C. Yagmurdur, F. B. Atac, N. Uslu et al., “Clinical importance of vitamin D receptor gene polymorphism in invasive ductal carcinoma,” International Surgery, vol. 94, no. 4, pp. 304–309, 2009. View at Scopus
  192. W. Zhou, R. S. Heist, G. Liu et al., “Polymorphisms of vitamin D receptor and survival in early-stage non-small cell lung cancer patients,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 11, pp. 2239–2245, 2006. View at Publisher · View at Google Scholar · View at Scopus
  193. T. E. McAlindon, D. T. Felson, Y. Zhang et al., “Relation of dietary intake and serum levels of vitamin D to progression of osteoarthritis of the knee among participants in the Framingham Study,” Annals of Internal Medicine, vol. 125, no. 5, pp. 353–359, 1996. View at Scopus
  194. R. T. Chlebowski, K. C. Johnson, D. Lane et al., “25-Hydroxyvitamin D concentration, vitamin D intake and joint symptoms in postmenopausal women,” Maturitas, vol. 68, no. 1, pp. 73–78, 2011. View at Publisher · View at Google Scholar · View at Scopus
  195. K. D. Crew, H. Greenlee, J. Capodice et al., “Prevalence of joint symptoms in postmenopausal women taking aromatase inhibitors for early-stage breast cancer,” Journal of Clinical Oncology, vol. 25, no. 25, pp. 3877–3883, 2007. View at Publisher · View at Google Scholar · View at Scopus
  196. R. T. Chlebowski, “Aromatase inhibitor-associated arthralgias,” Journal of Clinical Oncology, vol. 27, no. 30, pp. 4932–4934, 2009. View at Publisher · View at Google Scholar · View at Scopus
  197. N. L. Waltman, C. D. Ott, J. J. Twiss, G. J. Gross, and A. M. Lindsey, “Vitamin D insufficiency and musculoskeletal symptoms in breast cancer survivors on aromatase inhibitor therapy,” Cancer Nursing, vol. 32, no. 2, pp. 143–150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  198. D. Prieto-Alhambra, M. K. Javaid, S. Servitja et al., “Vitamin D threshold to prevent aromatase inhibitor-induced arthralgia: A Prospective Cohort Study,” Breast Cancer Research and Treatment, vol. 125, no. 3, pp. 869–878, 2011. View at Publisher · View at Google Scholar · View at Scopus
  199. Q. J. Khan, P. S. Reddy, B. F. Kimler et al., “Effect of vitamin D supplementation on serum 25-hydroxy vitamin D levels, joint pain, and fatigue in women starting adjuvant letrozole treatment for breast cancer,” Breast Cancer Research and Treatment, vol. 119, no. 1, pp. 111–118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  200. D. W. Cescon, P. A. Ganz, S. Hallak, M. Ennis, B. K. Mills, and P. J. Goodwin, “Feasibility of a randomized controlled trial of vitamin D vs. placebo in recently diagnosed breast cancer patients,” Breast Cancer Research and Treatment, vol. 134, no. 2, pp. 759–767, 2012.
  201. M. F. Holick and T. C. Chen, “Vitamin D deficiency: a worldwide problem with health consequences,” American Journal of Clinical Nutrition, vol. 87, no. 4, pp. 1080S–1086S, 2008. View at Scopus
  202. M. F. Holick, “Medical progress: vitamin D deficiency,” The New England Journal of Medicine, vol. 357, no. 3, pp. 266–281, 2007. View at Publisher · View at Google Scholar · View at Scopus
  203. H. A. Bischoff-Ferrari, E. Giovannucci, W. C. Willett, T. Dietrich, and B. Dawson-Hughes, “Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes,” American Journal of Clinical Nutrition, vol. 84, no. 1, pp. 18–28, 2006. View at Scopus
  204. P. Autier and S. Gandini, “Vitamin D supplementation and total mortality: a meta-analysis of randomized controlled trials,” Archives of Internal Medicine, vol. 167, no. 16, pp. 1730–1737, 2007. View at Publisher · View at Google Scholar · View at Scopus
  205. C. F. Garland, E. D. Gorham, S. B. Mohr et al., “Vitamin D and prevention of breast cancer: pooled analysis,” Journal of Steroid Biochemistry and Molecular Biology, vol. 103, no. 3–5, pp. 708–711, 2007. View at Publisher · View at Google Scholar · View at Scopus
  206. R. P. Heaney, K. M. Davies, T. C. Chen, M. F. Holick, and M. Janet Barger-Lux, “Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol,” American Journal of Clinical Nutrition, vol. 77, no. 1, pp. 204–210, 2003. View at Scopus
  207. S. Ish-Shalom, E. Segal, T. Salganik, B. Raz, I. L. Bromberg, and R. Vieth, “Comparison of daily, weekly, and monthly vitamin D3 in ethanol dosing protocols for two months in elderly hip fracture patients,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 9, pp. 3430–3435, 2008. View at Publisher · View at Google Scholar · View at Scopus
  208. R. Vieth, P. C. R. Chan, and G. D. MacFarlane, “Efficacy and safety of vitamin D3 intake exceeding the lowest observed adverse effect level,” American Journal of Clinical Nutrition, vol. 73, no. 2, pp. 288–294, 2001. View at Scopus
  209. J. N. Hathcock, A. Shao, R. Vieth, and R. Heaney, “Risk assessment for vitamin D,” American Journal of Clinical Nutrition, vol. 85, no. 1, pp. 6–18, 2007. View at Scopus
  210. R. Z. Stolzenberg-Solomon, R. Vieth, A. Azad et al., “A prospective nested case-control study of vitamin D status and pancreatic cancer risk in male smokers,” Cancer Research, vol. 66, no. 20, pp. 10213–10219, 2006. View at Publisher · View at Google Scholar · View at Scopus
  211. P. Tuohimaa, L. Tenkanen, M. Ahonen et al., “Both high and low levels of blood vitamin D are associated with a higher prostate cancer risk: a longitudinal, nested case-control study in the Nordic countries,” International Journal of Cancer, vol. 108, no. 1, pp. 104–108, 2004. View at Publisher · View at Google Scholar · View at Scopus
  212. C. C. Abnet, W. Chen, S. M. Dawsey et al., “Serum 25(OH)-vitamin D concentration and risk of esophageal squamous dysplasia,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 9, pp. 1889–1893, 2007. View at Publisher · View at Google Scholar · View at Scopus
  213. M. L. Melamed, E. D. Michos, W. Post, and B. Astor, “25-hydroxyvitamin D levels and the risk of mortality in the general population,” Archives of Internal Medicine, vol. 168, no. 15, pp. 1629–1637, 2008. View at Publisher · View at Google Scholar · View at Scopus
  214. C. F. Garland, F. C. Garland, E. K. Shaw, G. W. Comstock, K. J. Helsing, and E. D. Gorham, “Serum 25-hydroxyvitamin D and colon cancer: eight-year Prospective Study,” Lancet, vol. 2, no. 8673, pp. 1176–1178, 1989. View at Scopus
  215. T. J. Wang, M. J. Pencina, S. L. Booth et al., “Vitamin D deficiency and risk of cardiovascular disease,” Circulation, vol. 117, no. 4, pp. 503–511, 2008. View at Publisher · View at Google Scholar · View at Scopus
  216. R. Vieth, “Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety,” American Journal of Clinical Nutrition, vol. 69, no. 5, pp. 842–856, 1999. View at Scopus
  217. R. D. Jackson, A. Z. LaCroix, M. Gass et al., “Calcium plus vitamin D supplementation and the risk of fractures,” The New England Journal of Medicine, vol. 354, no. 7, pp. 669–683, 2006. View at Publisher · View at Google Scholar · View at Scopus
  218. M. Chung, J. Lee, T. Terasawa, J. Lau, and T. A. Trikalinos, “Vitamin D with or without calcium supplementation for prevention of cancer and fractures: an updated meta-analysis for the U.S. Preventive Services Task Force,” Annals of Internal Medicine, vol. 155, pp. 827–838, 2011.
  219. J. Wactawski-Wende, J. Morley Kotchen, G. L. Anderson et al., “Calcium plus vitamin D supplementation and the risk of colorectal cancer,” The New England Journal of Medicine, vol. 354, no. 7, pp. 684–696, 2006. View at Publisher · View at Google Scholar · View at Scopus
  220. E. L. Ding, S. Mehta, W. W. Fawzi, and E. L. Giovannucci, “Interaction of estrogen therapy with calcium and vitamin D supplementation on colorectal cancer risk: reanalysis of women's health initiative randomized trial,” International Journal of Cancer, vol. 122, no. 8, pp. 1690–1694, 2008. View at Publisher · View at Google Scholar · View at Scopus
  221. E. A. Jacobson, K. A. James, H. L. Newmark, and K. K. Carroll, “Effects of dietary fat, calcium, and vitamin D on growth and mammary tumorigenesis induced by 7,12-dimethylbenz(a)anthracene in female Sprague-Dawley rats,” Cancer Research, vol. 49, no. 22, pp. 6300–6303, 1989. View at Scopus
  222. A. Avenell, W. J. Gillespie, L. D. Gillespie, and D. O'Connell, “Vitamin D and vitamin D analogues for preventing fractures associated with involutional and post-menopausal osteoporosis,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD000227, 2009. View at Scopus
  223. C. E. Simmons, E. Amir, G. Dranitsaris et al., “Altered calcium metabolism in patients on long-term bisphosphonate therapy for metastatic breast cancer,” Anticancer Research, vol. 29, no. 7, pp. 2707–2711, 2009. View at Scopus
  224. E. Amir, C. E. Simmons, O. C. Freedman et al., “A phase 2 trial exploring the effects of high-dose (10,000 IU/day) vitamin D3 in breast cancer patients with bone metastases,” Cancer, vol. 116, no. 2, pp. 284–291, 2010. View at Publisher · View at Google Scholar · View at Scopus
  225. T. M. Beer, D. Lemmon, B. A. Lowe, and W. D. Henner, “High-dose weekly oral calcitriol in patients with a rising PSA after prostatectomy or radiation for prostate carcinoma,” Cancer, vol. 97, no. 5, pp. 1217–1224, 2003. View at Publisher · View at Google Scholar · View at Scopus
  226. C. Gross, T. Stamey, S. Hancock, and D. Feldman, “Treatment of early recurrent prostate cancer with 1,25-dihydroxyvitamin D3 (calcitriol),” Journal of Urology, vol. 159, no. 6, pp. 2035–2040, 1998. View at Scopus
  227. T. M. Beer and A. Myrthue, “Calcitriol in cancer treatment: from the lab to the clinic,” Molecular Cancer Therapeutics, vol. 3, no. 3, pp. 373–381, 2004. View at Scopus
  228. D. L. Trump, D. M. Potter, J. Muindi, A. Brufsky, and C. S. Johnson, “Phase II trial of high-dose, intermittent calcitriol (1,25 dihydroxyvitamin D3) and dexamethasone in androgen-independent prostate cancer,” Cancer, vol. 106, no. 10, pp. 2136–2142, 2006. View at Publisher · View at Google Scholar · View at Scopus
  229. T. Gulliford, J. English, K. W. Colston, P. Menday, S. Moller, and R. C. Coombes, “A phase I study of the vitamin D analogue EB 1089 in patients with advanced breast and colorectal cancer,” British Journal of Cancer, vol. 78, no. 1, pp. 6–13, 1998. View at Scopus
  230. C. Mørk Hansen, K. J. Hamberg, E. Binderup, and L. Binderup, “Seocalcitol (EB 1089): a vitamin D analogue of anti-cancer potential. Background, design, synthesis, pre-clinical and clinical evaluation,” Current Pharmaceutical Design, vol. 6, no. 7, pp. 803–828, 2000. View at Scopus
  231. T. W. Flaig, A. Barqawi, G. Miller et al., “A phase II trial of dexamethasone, vitamin D, and carboplatin in patients with hormone-refractory prostate cancer,” Cancer, vol. 107, no. 2, pp. 266–274, 2006. View at Publisher · View at Google Scholar · View at Scopus
  232. T. M. Beer, C. W. Ryan, P. M. Venner, et al., “Double-blinded randomized study of high-dose calcitriol plus docetaxel compared with placebo plus docetaxel in androgen-independent prostate cancer: a report from the ASCENT Investigators,” Journal of Clinical Oncology, vol. 25, pp. 669–674, 2007.
  233. H. I. Scher, X. Jia, K. Chi et al., “Randomized, open-label phase III trial of docetaxel plus high-dose calcitriol versus docetaxel plus prednisone for patients with castration-resistant prostate cancer,” Journal of Clinical Oncology, vol. 29, no. 16, pp. 2191–2198, 2011. View at Publisher · View at Google Scholar · View at Scopus
  234. J. S. Chan, T. M. Beer, D. I. Quinn et al., “A phase II study of high-dose calcitriol combined with mitoxantrone and prednisone for androgen-independent prostate cancer,” BJU International, vol. 102, no. 11, pp. 1601–1606, 2008. View at Publisher · View at Google Scholar · View at Scopus
  235. S. Attia, J. Eickhoff, G. Wilding et al., “Randomized, double-blinded phase II evaluation of docetaxel with or without doxercalciferol in patients with metastatic, androgen-independent prostate cancer,” Clinical Cancer Research, vol. 14, no. 8, pp. 2437–2443, 2008. View at Publisher · View at Google Scholar · View at Scopus
  236. R. Petrioli, A. Pascucci, E. Francini et al., “Weekly high-dose calcitriol and docetaxel in patients with metastatic hormone-refractory prostate cancer previously exposed to docetaxel,” BJU International, vol. 100, no. 4, pp. 775–779, 2007. View at Publisher · View at Google Scholar · View at Scopus
  237. A. V. Krishnan, D. L. Trump, C. S. Johnson, and D. Feldman, “The role of vitamin D in cancer prevention and treatment,” Endocrinology and Metabolism Clinics of North America, vol. 39, no. 2, pp. 401–418, 2010. View at Publisher · View at Google Scholar · View at Scopus
  238. K. Kupferschmidt, “Uncertain verdict as vitamin D goes on trial,” Science, vol. 337, pp. 1476–1478, 2012.
  239. C. J. Fabian, B. F. Kimler, T. Phillips, and C. M. Zalles, “Levels of 25-hydroxy-vitamin D in pre-menopausal women at high risk for development of breast cancer,” Cancer Research, vol. 69, no. 2, supplement 1, 2009.