About this Journal Submit a Manuscript Table of Contents
ISRN Oncology
Volume 2013 (2013), Article ID 518637, 12 pages
http://dx.doi.org/10.1155/2013/518637
Research Article

Midkine Mediates Intercellular Crosstalk between Drug-Resistant and Drug-Sensitive Neuroblastoma Cells In Vitro and In Vivo

1Children’s Hospital of Chicago Research Center, Chicago, IL 60614, USA
2Department of Surgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 225 East Chicago Avenue, Box 224, Chicago, IL 60611, USA
3Department of Pathology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 225 East Chicago Avenue, Box 224, Chicago, IL 60611, USA
4Department of Biomedical Engineering, Washington University, St. Louis, MO, USA

Received 10 May 2013; Accepted 30 May 2013

Academic Editors: D. Canuti, C. Damodaran, W. Kildal, and H. M. Warenius

Copyright © 2013 Fei Chu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. M. Gottesman, C. A. Hrycyna, P. V. Schoenlein, U. A. Germann, and I. Pastan, “Genetic analysis of the multidrug transporter,” Annual Review of Genetics, vol. 29, pp. 607–649, 1995. View at Scopus
  2. M. D. Norris, S. B. Bordow, G. M. Marshall, P. S. Haber, S. L. Cohn, and M. Haber, “Expression of the gene for multidrug-resistance-associated protein and outcome in patients with neuroblastoma,” The New England Journal of Medicine, vol. 334, no. 4, pp. 231–238, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. K. M. Debatin and P. H. Krammer, “Death receptors in chemotherapy and cancer,” Oncogene, vol. 23, no. 16, pp. 2950–2966, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Fulda and K.-M. Debatin, “Apoptosis pathways in neuroblastoma therapy,” Cancer Letters, vol. 197, no. 1-2, pp. 131–135, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. M. Gottesman, T. Fojo, and S. E. Bates, “Multidrug resistance in cancer: role of ATP-dependent transporters,” Nature Reviews Cancer, vol. 2, no. 1, pp. 48–58, 2002. View at Scopus
  6. B. L. Mirkin, S. Clark, X. Zheng et al., “Identification of midkine as a mediator for intercellular transfer of drug resistance,” Oncogene, vol. 24, no. 31, pp. 4965–4974, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S.-H. Koshizawa, T. Matsumura, Y. Kadono et al., “Alteration of midkine expression associated with chemically-induced differentiation in human neuroblastoma cells,” Cancer Letters, vol. 111, no. 1-2, pp. 117–125, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Nakagawara, J. Milbrandt, T. Muramatsu et al., “Differential expression of pleiotrophin and midkine in advanced neuroblastomas,” Cancer Research, vol. 55, no. 8, pp. 1792–1797, 1995. View at Scopus
  9. M. Muramaki, H. Miyake, I. Hara, and S. Kamidono, “Introduction of midkine gene into human bladder cancer cells enhances their malignant phenotype but increases their sensitivity to antiangiogenic therapy,” Clinical Cancer Research, vol. 9, no. 14, pp. 5152–5160, 2003. View at Scopus
  10. W. Barthlen, D. Flaadt, R. Girgert et al., “Significance of heparin-binding growth factor expression on cells of solid pediatric tumors,” Journal of Pediatric Surgery, vol. 38, no. 9, pp. 1296–1304, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Ota, H. Fujimori, M. Ueda et al., “Midkine as a prognostic biomarker in oral squamous cell carcinoma,” British Journal of Cancer, vol. 99, no. 4, pp. 655–662, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Ikematsu, A. Nakagawara, Y. Nakamura et al., “Correlation of elevated level of blood midkine with poor prognostic factors of human neuroblastomas,” British Journal of Cancer, vol. 88, no. 10, pp. 1522–1526, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Ikematsu, A. Nakagawara, Y. Nakamura et al., “Plasma midkine level is a prognostic factor for human neuroblastoma,” Cancer Science, vol. 99, no. 10, pp. 2070–2074, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Choudhuri, H.-T. Zhang, S. Donnini, M. Ziche, and R. Bicknell, “An angiogenic role for the neurokines midkine and pleiotrophin in tumorigenesis,” Cancer Research, vol. 57, no. 9, pp. 1814–1819, 1997. View at Scopus
  15. H. C. Kang, I. J. Kim, J. H. Park et al., “Identification of genes with differential expression in acquired drug-resistant gastric cancer cells using high-density oligonucleotide microarrays,” Clinical Cancer Research, vol. 10, no. 1, pp. 272–284, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Qi, S. Ikematsu, K. Ichihara-Tanaka, S. Sakuma, T. Muramatsu, and K. Kadomatsu, “Midkine rescues Wilms' tumor cells from cisplatin-induced apoptosis: regulation of Bcl-2 expression by midkine,” The Journal of Biochemistry, vol. 127, no. 2, pp. 269–277, 2000. View at Scopus
  17. E. Schurr, M. Raymond, J. C. Bell, and P. Gros, “Characterization of the multidrug resistance protein expressed in cell clones stably transfected with the mouse mdr1 cDNA,” Cancer Research, vol. 49, no. 10, pp. 2729–2734, 1989. View at Scopus
  18. U. Stein, K. Jürchott, M. Schläfke, and P. Hohenberger, “Expression of multidrug resistance genes MVP, MDR1, and MRP1 determined sequentially before, during, and after hyperthermic isolated limb perfusion of soft tissue sarcoma and melanoma patients,” Journal of Clinical Oncology, vol. 20, no. 15, pp. 3282–3292, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Kadomatsu, M. Tomomura, and T. Muramatsu, “cDNA cloning and sequencing of a new gene intensely expressed in early differentiation stages of embryonal carcinoma cells and in mid-gestation period of mouse embyrogenesis,” Biochemical and Biophysical Research Communications, vol. 151, no. 3, pp. 1312–1318, 1988. View at Scopus
  20. T. Muramatsu, “Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis,” The Journal of Biochemistry, vol. 132, no. 3, pp. 359–371, 2002. View at Scopus
  21. Y. Takei, K. Kadomatsu, T. Goto, and T. Muramatsu, “Combinational antitumor effect of siRNA against midkine and paclitaxel on growth of human prostate cancer xenografts,” Cancer, vol. 107, no. 4, pp. 864–873, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. L. C. Dai, X. Yao, X. Wang et al., “In vitro and in vivo suppression of hepatocellular carcinoma growth by midkine-antisense oligonucleotide-loaded nanoparticles,” World Journal of Gastroenterology, vol. 15, no. 16, pp. 1966–1972, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Owada, N. Sanjo, T. Kobayashi et al., “Midkine inhibits caspase-dependent apoptosis via the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase in cultured neurons,” Journal of Neurochemistry, vol. 73, no. 5, pp. 2084–2092, 1999. View at Scopus
  24. M. Lorente, S. Torres, M. Salazar et al., “Stimulation of ALK by the growth factor midkine renders glioma cells resistant to autophagy-mediated cell death,” Autophagy, vol. 7, no. 9, pp. 1071–1073, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Ohuchida, K. Okamoto, K. Akahane et al., “Midkine protects hepatocellular carcinoma cells against TRAIL-mediated apoptosis through down-regulation of caspase-3 activity,” Cancer, vol. 100, no. 11, pp. 2430–2436, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. G. A. Mashour, N. Ratner, G. A. Khan, H. L. Wang, R. L. Martuza, and A. Kurtz, “The angiogenic factor midkine is aberrantly expressed in NF1-deficient Schwann cells and is a mitogen for neurofibroma-derived cells,” Oncogene, vol. 20, no. 1, pp. 97–105, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. E. A. Ratovitski, P. T. Kotzbauer, J. Milbrandt, C. J. Lowenstein, and C. R. Burrow, “Midkine induces tumor cell proliferation and binds to a high affinity signaling receptor associated with JAK tyrosine kinases,” The Journal of Biological Chemistry, vol. 273, no. 6, pp. 3654–3660, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. You, Y. Dong, X. Kong, L. A. Beckett, R. Gandour-Edwards, et al., “Midkine is a NF-kappaB-inducible gene that supports prostate cancer cell survival,” BMC Medical Genomics, vol. 1, p. 6, 2008. View at Publisher · View at Google Scholar
  29. C. Güngör, H. Zander, K. E. Effenberger et al., “Notch signaling activated by replication stress-induced expression of midkine drives epithelial-mesenchymal transition and chemoresistance in pancreatic cancer,” Cancer Research, vol. 71, no. 14, pp. 5009–5019, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Nakanishi, K. Kadomatsu, T. Okamoto et al., “Expression of syndecan-1 and -3 during embryogenesis of the central nervous system in relation to binding with midkine,” Journal of Biochemistry, vol. 121, no. 2, pp. 197–205, 1997. View at Scopus
  31. N. Maeda, K. Ichihara-Tanaka, T. Kimura, K. Kadomatsu, T. Muramatsu, and M. Noda, “A receptor-like protein-tyrosine phosphatase PTPζ/RPTPβ binds a heparin-binding growth factor midkine: involvement of arginine 78 of midkine in the high affinity binding to PTPζ,” Journal of Biological Chemistry, vol. 274, no. 18, pp. 12474–12479, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. G. E. Stoica, A. Kuo, C. Powers et al., “Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types,” Journal of Biological Chemistry, vol. 277, no. 39, pp. 35990–35998, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Kadomatsu, “The midkine family in cancer, inflammation and neural development,” Nagoya Journal of Medical Science, vol. 67, no. 3-4, pp. 71–82, 2005. View at Scopus