About this Journal Submit a Manuscript Table of Contents
ISRN Oncology
Volume 2013 (2013), Article ID 624794, 13 pages
http://dx.doi.org/10.1155/2013/624794
Review Article

Epigenetic Influences in the Aetiology of Cancers Arising from Breast and Prostate: A Hypothesised Transgenerational Evolution in Chromatin Accessibility

Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK

Received 9 December 2012; Accepted 26 December 2012

Academic Editors: L. Mutti, M. Stracke, T. Yokoe, and Y. Yu

Copyright © 2013 Francis L. Martin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. L. Grover and F. L. Martin, “The initiation of breast and prostate cancer,” Carcinogenesis, vol. 23, no. 7, pp. 1095–1102, 2002. View at Scopus
  2. D. M. Parkin, P. Pisani, and J. Ferlay, “Estimates of the worldwide incidence of 25 major cancers in 1990,” International Journal of Cancer, vol. 80, no. 6, pp. 827–841.
  3. C. S. Muir, J. Nectoux, and J. Staszewski, “The epidemiology of prostatic cancer. Geographical distribution and time-trends,” Acta Oncologica, vol. 30, no. 2, pp. 133–140, 1991. View at Scopus
  4. J. Peto, “Cancer epidemiology in the last century and the next decade,” Nature, vol. 411, no. 6835, pp. 390–395, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Saito, M. Matsuzaki, T. Sakuma, et al., “Clinicopathological study of non-palpable familial breast cancer detected by screening mammography and diagnosed as DCIS,” Breast Cancer. In press. View at Publisher · View at Google Scholar
  6. F. Stenback, R. Peto, and P. Shubik, “Initiation and promotion at different ages and doses in 2200 mice. III. Linear extrapolation from high doses may underestimate low-dose tumour risks,” British Journal of Cancer, vol. 44, no. 1, pp. 24–34, 1981. View at Scopus
  7. A. L. Reddy and P. J. Fialkow, “Influence of dose of initiator on two-stage skin carcinogenesis in BALB/c mice with cellular moscaicism,” Carcinogenesis, vol. 9, no. 5, pp. 751–754, 1988. View at Scopus
  8. A. L. Herbst, R. E. Scully, and S. J. Robboy, “The significance of adenosis and clear cell adenocarcinoma of the genital tract in young females,” Journal of Reproductive Medicine for the Obstetrician and Gynecologist, vol. 15, no. 1, pp. 5–11, 1975. View at Scopus
  9. D. C. Dolinoy, J. R. Weidman, R. A. Waterland, and R. L. Jirtle, “Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome,” Environmental Health Perspectives, vol. 114, no. 4, pp. 567–572, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Ur Rehman, Q. M. Buttar, M. Irfan-ul-Haq Khawaja, and M. Rizwan-ul-Haq Khawaja, “An impending cancer crisis in developing countries: are we ready for the challenge?” Asian Pacific Journal of Cancer Prevention, vol. 10, no. 4, pp. 719–720, 2009. View at Scopus
  11. K. K. Carroll, E. B. Gammal, and E. R. Plunkett, “Dietary fat and mammary cancer,” Canadian Medical Association journal, vol. 98, no. 12, pp. 590–594, 1968. View at Scopus
  12. F. L. Martin, P. L. Carmichael, C. Crofton-Sleigh, S. Venitt, D. H. Phillips, and P. L. Grover, “Genotoxicity of human mammary lipid,” Cancer Research, vol. 56, no. 23, pp. 5342–5346, 1996. View at Scopus
  13. F. L. Martin, S. Venitt, P. L. Carmichael et al., “DNA damage in breast epithelial cells: detection by the single-cell gel (comet) assay and induction by human mammary lipid extracts,” Carcinogenesis, vol. 18, no. 12, pp. 2299–2305, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. L. Bronner, “Nutritional status outcomes for children: ethnic, cultural, and environmental contexts,” Journal of the American Dietetic Association, vol. 96, no. 9, pp. 891–903, 1996. View at Scopus
  15. C. Maringe, P. Mangtani, B. Rachet, D. A. Leon, M. P. Coleman, and I. dos Santos Silva, “Cancer incidence in South Asian migrants to England, 1986–2004: unraveling ethnic from socioeconomic differentials,” International Journal of Cancer. In press. View at Publisher · View at Google Scholar
  16. F. L. Martin, “Epigenomics and disease, 10th anniversary winter meeting of the UK Molecular Epidemiology Group (MEG), the Royal Statistical Society, London, UK, 8th December 2006,” Mutagenesis, vol. 22, no. 6, pp. 425–427, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. V. V. Lao and W. M. Grady, “Epigenetics and colorectal cancer,” Nature Reviews Gastroenterology and Hepatology, vol. 8, no. 12, pp. 686–700, 2011.
  18. L. Hou, X. Zhang, D. Wang, and A. Baccarelli, “Environmental chemical exposures and human epigenetics,” International Journal of Epidemiology, vol. 41, no. 1, pp. 79–105, 2012.
  19. A. Merlo, J. G. Herman, L. Mao et al., “5 CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers,” Nature Medicine, vol. 1, no. 7, pp. 686–692, 1995. View at Scopus
  20. A. L. Reed, J. Califano, P. Cairns et al., “High frequency of p16 (CDKN2/MTS-1/INK4A) inactivation in head and neck squamous cell carcinoma,” Cancer Research, vol. 56, no. 16, pp. 3630–3633, 1996. View at Scopus
  21. J. G. Herman, C. I. Civin, J. P. J. Issa, M. I. Collector, S. J. Sharkis, and S. B. Baylin, “Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies,” Cancer Research, vol. 57, no. 5, pp. 837–841, 1997. View at Scopus
  22. S. Snellenberg, L. M. Strooper, A. T. Hesselink, et al., “Development of a multiplex methylation-specific PCR as candidate triage test for women with an HPV-positive cervical scrape,” BMC Cancer, vol. 12, no. 1, article 551, 2012.
  23. J. W. Kim, S. T. Kim, A. R. Turner, et al., “Identification of new differentially methylated genes that have potential functional consequences in prostate cancer,” PloS One, vol. 7, no. 10, Article ID e48455, 2012.
  24. H. Heyn, F. J. Carmona, A. Gomez, et al., “DNA methylation profiling in breast cancer discordant identical twins identifies DOK7 as novel epigenetic biomarker,” Carcinogenesis, vol. 34, no. 1, pp. 102–108, 2013. View at Publisher · View at Google Scholar
  25. B. Schuster-Böckler and B. Lehner, “Chromatin organization is a major influence on regional mutation rates in human cancer cells,” Nature, vol. 488, no. 7411, pp. 504–507, 2012.
  26. O. A. Botrugno, T. Robert, F. Vanoli, M. Foiani, and S. Minucci, “Molecular pathways: old drugs define new pathways: non-histone acetylation at the crossroads of the DNA damage response and autophagy,” Clinical Cancer Research, vol. 18, no. 9, pp. 2436–2442, 2012.
  27. M. Zeybel, T. Hardy, Y. K. Wong, et al., “Multigenerational epigenetic adaptation of the hepatic wound-healing response,” Nature Medicine, vol. 18, no. 9, pp. 1369–1377, 2012.
  28. C. Lu and C. B. Thompson, “Metabolic regulation of epigenetics,” Cell Metabolism, vol. 16, no. 1, pp. 9–17, 2012.
  29. E. B. Keverne, “Epigenetics and brain evolution,” Epigenomics, vol. 3, no. 2, pp. 183–191, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Sanchis-Gomar, J. L. Garcia-Gimenez, C. Perez-Quilis, M. C. Gomez-Cabrera, F. V. Pallardo, and G. Lippi, “Physical exercise as an epigenetic modulator: eustress, the “positive stress” as an effector of gene expression,” The Journal of Strength & Conditioning Research, vol. 26, no. 12, pp. 3469–3472, 2012.
  31. R. Maruyama and H. Suzuki, “Long noncoding RNA involvement in cancer,” BMB Reports, vol. 45, no. 11, pp. 604–611, 2012.
  32. A. Banerjee and K. Luettich, “MicroRNAs as potential biomarkers of smoking-related diseases,” Biomarkers in Medicine, vol. 6, no. 5, pp. 671–684, 2012.
  33. S. Volinia, G. A. Calin, C. G. Liu et al., “A microRNA expression signature of human solid tumors defines cancer gene targets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2257–2261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. O. Meikar, M. Da Ros, and N. Kotaja, “Epigenetic regulation of male germ cell differentiation,” Subcellular Biochemistry, vol. 61, pp. 119–138, 2012.
  35. S. Malan-Müller, S. M. Hemmings, and S. Seedat, “Big effects of small RNAs: a review of microRNAs in anxiety,” Molecular Neurobiology. In press. View at Publisher · View at Google Scholar
  36. M. Ballarino, L. Jobert, D. Dembélé, P. de la Grange, D. Auboeuf, and L. Tora, “TAF15 is important for cellular proliferation and regulates the expression of a subset of cell cycle genes through miRNAs,” Oncogene. In press. View at Publisher · View at Google Scholar
  37. M. A. Listowski, E. Heger, D. M. Bogusławska, et al., “microRNAs: fine tuning of erythropoiesis,” Cellular and Molecular Biology Letters, vol. 18, no. 1, pp. 34–46, 2013. View at Publisher · View at Google Scholar
  38. A. Brevik, B. Lindeman, G. Brunborg, and N. Duale, “Paternal benzo[a]pyrene exposure modulates microRNA expression patterns in the developing mouse embryo,” International Journal of Cell Biology, vol. 2012, Article ID 407431, 11 pages, 2012. View at Publisher · View at Google Scholar
  39. K. A. Lillycrop and G. C. Burdge, “Epigenetic mechanisms linking early nutrition to long term health,” Best Practice & Research Clinical Endocrinology & Metabolism, vol. 26, no. 5, pp. 667–676, 2012.
  40. K. A. Lillycrop, “Effect of maternal diet on the epigenome: implications for human metabolic disease,” Proceedings of the Nutrition Society, vol. 70, no. 1, pp. 64–72, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Lechner, C. Boshoff, and S. Beck, “Cancer Epigenome,” Advances in Genetics, vol. 70, pp. 247–276, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. A. Williams, F. L. Martin, G. H. Muir, A. Hewer, P. L. Grover, and D. H. Phillips, “Metabolic activation of carcinogens and expression of various cytochromes P450 in human prostate tissue,” Carcinogenesis, vol. 21, no. 9, pp. 1683–1689, 2000. View at Scopus
  43. F. L. Martin, I. I. Patel, O. Sozeri et al., “Constitutive expression of bioactivating enzymes in normal human prostate suggests a capability to activate pro-carcinogens to DNA-damaging metabolites,” Prostate, vol. 70, no. 14, pp. 1586–1599, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Ragavan, R. Hewitt, L. J. Cooper et al., “CYP1B1 expression in prostate is higher in the peripheral than in the transition zone,” Cancer Letters, vol. 215, no. 1, pp. 69–78, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Abass, V. Lämsâ, P. Reponen, et al., “Characterization of human cytochrome P450 induction by pesticides,” Toxicology, vol. 294, no. 1, pp. 17–26, 2012.
  46. M. F. Fraga, E. Ballestar, M. F. Paz et al., “Epigenetic differences arise during the lifetime of monozygotic twins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 30, pp. 10604–10609, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Szarc vel Szic, M. N. Ndlovu, G. Haegeman, and W. Vanden Berghe, “Nature or nurture: let food be your epigenetic medicine in chronic inflammatory disorders,” Biochemical Pharmacology, vol. 80, no. 12, pp. 1816–1832, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. M. D. Anway, A. S. Cupp, N. Uzumcu, and M. K. Skinner, “Toxicology: epigenetic transgenerational actions of endocrine disruptors and male fertility,” Science, vol. 308, no. 5727, pp. 1466–1469, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Bartsch and R. Montesano, “Relevance of nitrosamines to human cancer,” Carcinogenesis, vol. 5, no. 11, pp. 1381–1393, 1984. View at Scopus
  50. D. A. Gouas, S. Villar, S. Ortiz-Cuaran, et al., “TP53 R249S mutation, genetic variations in HBX and risk of hepatocellular carcinoma in The Gambia,” Carcinogenesis, vol. 33, no. 6, pp. 1219–1224, 2012.
  51. M. Göttlicher, S. Minucci, P. Zhu et al., “Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells,” The EMBO Journal, vol. 20, no. 24, pp. 6969–6978, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Ahmad, K. Shekh, S. Khan, et al., “Pretreatment of valproic acid, a histone deacetylase inhibitor enhances the sensitivity of peripheral blood micronucleus assay in rodents,” Mutation Research. In press. View at Publisher · View at Google Scholar
  53. A. T. Vo and R. M. Millis, “Epigenetics and breast cancers,” Obstetrics and Gynecology International, vol. 2012, Article ID 602720, 10 pages, 2012. View at Publisher · View at Google Scholar
  54. R. Martinez-Zamudio and H. C. Ha, “Environmental epigenetics in metal exposure,” Epigenetics, vol. 6, no. 7, pp. 820–827, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Arai, J. Ohgane, S. Yagi, et al., “Epigenetic assessment of environmental chemicals detected in maternal peripheral and cord blood samples,” Journal of Reproduction and Development, vol. 57, no. 4, pp. 507–517, 2011.
  56. F. L. Martin, “Complex mixtures that may contain mutagenic and/or genotoxic components: a need to assess in vivo target-site effect(s) associated with in vitro-positive(s),” Chemosphere, vol. 69, no. 6, pp. 841–848, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. V. Llabjani, J. Trevisan, K. C. Jones, R. F. Shore, and F. L. Martin, “Binary mixture effects by PBDE congeners (47, 153, 183, or 209) and PCB congeners (126 or 153) in MCF-7 cells: biochemical alterations assessed by IR spectroscopy and multivariate analysis,” Environmental Science and Technology, vol. 44, no. 10, pp. 3992–3998, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. L. J. Lister, C. Svendsen, J. Wright, H. L. Hooper, and D. J. Spurgeon, “Modelling the joint effects of a metal and a pesticide on reproduction and toxicokinetics in Lumbricid earthworms,” Environment International, vol. 37, no. 4, pp. 663–670, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. J. A. Rusiecki, A. Baccarelli, V. Bollati, L. Tarantini, L. E. Moore, and E. C. Bonefeld-Jorgensen, “Global DNA hypomethylation is associated with high serum-persistent organic pollutants in Greenlandic inuit,” Environmental Health Perspectives, vol. 116, no. 11, pp. 1547–1552, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Yuasa, “Epigenetics in molecular epidemiology of cancer: a new scope,” Advances in Genetics, vol. 71, pp. 212–235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Janesick and B. Blumberg, “Obesogens, stem cells and the developmental programming of obesity,” International Journal of Andrology, vol. 35, no. 3, pp. 437–448, 2012.
  62. E. Karoutsou and A. Polymeris, “Environmental endocrine disruptors and obesity,” Endocrine Regulations, vol. 46, no. 1, pp. 37–46, 2012.
  63. B. C. Christensen and C. J. Marsit, “Epigenomics in environmental health,” Frontiers in Genetics, vol. 2, article 84, 2011.
  64. T. Wang, J. G. Garcia, and W. Zhang, “Epigenetic regulation in particulate matter-mediated cardiopulmonary toxicities: a systems biology perspective,” Current Pharmacogenomics and Personalized Medicine, vol. 10, no. 4, pp. 314–321, 2012.
  65. M. Tian, S. Peng, F. L. Martin, et al., “Perfluorooctanoic acid induces gene promoter hypermethylation of glutathione-S-transferase Pi in human liver L02 cells,” Toxicology, vol. 296, pp. 48–55, 2012.
  66. R. Feil and M. F. Fraga, “Epigenetics and the environment: emerging patterns and implications,” Nature Reviews Genetics, vol. 13, no. 2, pp. 97–109, 2012.
  67. J. R. Roberts, C. J. Karr, and Council on Environmental Health, “Pesticide exposure in children,” Pediatrics, vol. 130, no. 6, pp. e1765–e1788, 2012.
  68. I. P. Pogribny and I. Rusyn, “Environmental toxicants, epigenetics, and cancer,” Advances in Experimental Medicine and Biology, vol. 754, pp. 215–232, 2013.
  69. B. Wang, Y. Li, C. Shao, Y. Tan, and L. Cai, “Cadmium and its epigenetic effects,” Current Medicinal Chemistry, vol. 19, no. 16, pp. 2611–2620, 2012.
  70. S. Singh and S. S. . Li, “Epigenetic effects of environmental chemicals bisphenol A and phthalates,” International Journal of Molecular Sciences, vol. 13, no. 8, pp. 10143–10153, 2012.
  71. C. M. Markey, P. R. Wadia, B. S. Rubin, C. Sonnenschein, and A. M. Soto, “Long-term effects of fetal exposure to low doses of the xenoestrogen bisphenol-A in the female mouse genital tract,” Biology of Reproduction, vol. 72, no. 6, pp. 1344–1351, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. A. F. Fleisch, R. O. Wright, and A. A. Baccarelli, “Environmental epigenetics: a role in endocrine disease,” Journal of Molecular Endocrinology, vol. 49, no. 2, pp. R61–R67, 2012.
  73. R. K. Vempati, “DNA damage in the presence of chemical genotoxic agents induce acetylation of H3K56 and H4K16 but not H3K9 in mammalian cells,” Molecular Biology Reports, vol. 39, no. 1, pp. 303–308, 2012.
  74. M. Esteller, “Relevance of DNA methylation in the management of cancer,” The Lancet Oncology, vol. 4, no. 6, pp. 351–358, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Kim, M. Bae, H. Na, and M. Yang, “Environmental toxicants-induced epigenetic alterations and their reversers,” Journal of Environmental Science and Health, Part C, vol. 30, no. 4, pp. 323–367, 2012.
  76. M. Talikka, N. Sierro, N. V. Ivanov, et al., “Genomic impact of cigarette smoke, with application to three smoking-related diseases,” Critical Reviews in Toxicology, vol. 42, no. 10, pp. 877–889, 2012.
  77. C. J. Mattingly, T. E. McKone, M. A. Callahan, J. A. Blake, and E. A. Hubal, “Providing the missing link: the exposure science ontology ExO,” Environmental Science & Technology, vol. 46, no. 6, pp. 3046–3053, 2012.
  78. C. J. Steves, T. D. Spector, and S. H. Jackson, “Ageing, genes, environment and epigenetics: what twin studies tell us now, and in the future,” Age and Ageing, vol. 41, no. 5, pp. 581–586, 2012.
  79. H. Heyn, N. Li, H. J. Ferreira, et al., “Distinct DNA methylomes of newborns and centenarians,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 26, pp. 10522–10527, 2012.
  80. H. H. Nelson, C. J. Marsit, B. C. Christensen, et al., “Key epigenetic changes associated with lung cancer development: results from dense methylation array profiling,” Epigenetics, vol. 7, no. 6, pp. 559–566, 2012.
  81. P. C. Turner, A. C. Collinson, Y. B. Cheung et al., “Aflatoxin exposure in utero causes growth faltering in Gambian infants,” International Journal of Epidemiology, vol. 36, no. 5, pp. 1119–1125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Verma, “Epigenetic biomarkers in cancer epidemiology,” Methods in Molecular Biology, vol. 863, pp. 467–480, 2012.
  83. P. Vineis and D. Kriebel, “Causal models in epidemiology: past inheritance and genetic future,” Environmental Health, vol. 5, article 21, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. D. Simmons, D. R. R. Williams, and M. J. Powell, “The Coventry Diabetes Study: prevalence of diabetes and impaired glucose tolerance in Europids and Asians,” Quarterly Journal of Medicine, vol. 81, no. 296, pp. 1021–1030, 1991. View at Scopus
  85. J. Dhawan, C. L. Bray, R. Warburton, D. S. Ghambhir, and J. Morris, “Insulin resistance, high prevalence of diabetes, and cardiovascular risk in immigrant Asians,” British Heart Journal, vol. 72, no. 5, pp. 413–421, 1994. View at Scopus
  86. M. C. Carey and B. Paigen, “Epidemiology of the American Indians' burden and its likely genetic origins,” Hepatology, vol. 36, no. 4, part 1, pp. 781–791, 2002. View at Publisher · View at Google Scholar · View at Scopus
  87. H. C. Pitot, “The stability of events in the natural history of neoplasia,” American Journal of Pathology, vol. 89, no. 3, pp. 703–716, 1977. View at Scopus
  88. I. Chouroulinkov, A. Gentil, and B. Tierney, “Biological activities of dihydrodiols derived from two polycyclic hydrocarbons in rodent test systems,” British Journal of Cancer, vol. 39, no. 4, pp. 376–382, 1979. View at Scopus
  89. R. A. CASE, “Incidence of death from tumours of the urinary bladder,” British Journal of Preventive & Social Medicine, vol. 7, no. 1, pp. 14–19, 1953. View at Scopus
  90. R. A. CASE, “The expected frequency of bladder tumour in works populations,” British Journal of iIndustrial Medicine, vol. 10, no. 2, pp. 114–120, 1953. View at Scopus
  91. R. Doll and R. Peto, “Mortality in relation to smoking: 20 years' observations on male British doctors,” British Medical Journal, vol. 2, no. 6051, pp. 1525–1536, 1976. View at Scopus
  92. R. Doll and R. Peto, “Cigarette smoking and bronchial carcinoma: dose and time relationships among regular smokers and lifelong non-smokers,” Journal of Epidemiology and Community Health, vol. 32, no. 4, pp. 303–313, 1978. View at Scopus
  93. I. C. Hsu, R. A. Metcalf, T. Sun, J. A. Welsh, N. J. Wang, and C. C. Harris, “Mutational hotspot in the p53 gene in human hepatocellular carcinomas,” Nature, vol. 350, no. 6317, pp. 427–428, 1991. View at Publisher · View at Google Scholar · View at Scopus
  94. M. C. Hollstein, C. P. Wild, F. Bleicher et al., “p53 Mutations and aflatoxin B1 exposure in hepatocellular carcinoma patients from Thailand,” International Journal of Cancer, vol. 53, no. 1, pp. 51–55, 1993. View at Publisher · View at Google Scholar · View at Scopus
  95. D. H. Phillips, “Fifty years of benzo(a)pyrene,” Nature, vol. 303, no. 5917, pp. 468–472, 1983. View at Scopus
  96. W. Pfau, F. L. Martin, K. J. Cole et al., “Heterocyclic aromatic amines induce DNA strand breaks and cell transformation,” Carcinogenesis, vol. 20, no. 4, pp. 545–551, 1999. View at Scopus
  97. M. Yamada, K. Kodama, S. Fujita et al., “Prevalence of skin neoplasms among the atomic bomb survivors,” Radiation Research, vol. 146, no. 2, pp. 223–226, 1996. View at Scopus
  98. R. Doll, “Mortality from lung cancer in asbestos workers,” British Journal of Industrial Medicine, vol. 12, no. 2, pp. 81–86, 1955.
  99. L. Rushton, S. J. Hutchings, L. Fortunato, et al., “Occupational cancer burden in Great Britain,” British Journal of Cancer, vol. 107, supplement 1, pp. 3–7, 2012.
  100. D. H. Philips, “Understanding the genotoxicity of tamoxifen?” Carcinogenesis, vol. 22, no. 6, pp. 839–849, 2001. View at Scopus
  101. J. Bendaly, K. J. Metry, M. A. Doll et al., “Role of human CYP1A1 and NAT2 in 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine-induced mutagenicity and DNA adducts,” Xenobiotica, vol. 39, no. 5, pp. 399–406, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. G. Maenhaut-Michel, R. Janel-Bintz, N. Samuel, and R. P. P. Fuchs, “Adducts formed by the food mutagen 2-amino-3-methylimidazo (4, 5-f) quinoline induce frameshift mutations at hot spots through an SOS-independent pathway,” Molecular and General Genetics, vol. 253, no. 5, pp. 634–641, 1997. View at Publisher · View at Google Scholar · View at Scopus
  103. J. Bauer, G. Xing, H. Yagi, J. M. Sayer, D. M. Jerina, and H. Ling, “A structural gap in Dpo4 supports mutagenic bypass of a major benzo [a]pyrene dG adduct in DNA through template misalignment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 38, pp. 14905–14910, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Saeed, C. Logie, K. J. Francoijs, et al., “Chromatin accessibility, p300, and histone acetylation define PML-RARa and AML1-ETO binding sites in acute myeloid leukemia,” Blood, vol. 120, no. 15, pp. 3058–3068, 2012.
  105. N. Nalabothula and F. Carrier, “Cancer cells' epigenetic composition and predisposition to histone deacetylase inhibitor sensitization,” Epigenomics, vol. 3, no. 2, pp. 145–155, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. A. Merrifield and W. Smith, “Sample size calculations for the design of health studies: a review of key concepts for non-statisticians,” New South Wales Public Health Bulletin, vol. 23, pp. 142–147, 2012.
  107. B. Armstrong, “A simple estimator of minimum detectable relative risk, sample size, or power in cohort studies,” American Journal of Epidemiology, vol. 126, no. 2, pp. 356–358, 1987. View at Scopus
  108. L. Ehrenberg and M. Törnqvist, “Use of biomarkers in epidemiology: quantitative aspects,” Toxicology Letters, vol. 64, pp. 485–492, 1992.
  109. P. Vineis, “The use of biomarkers in epidemiology: the example of bladder cancer,” Toxicology Letters, vol. 64-65, pp. 463–467, 1992. View at Publisher · View at Google Scholar · View at Scopus
  110. F. P. Perera, L. A. Mooney, M. Stampfer et al., “Associations between carcinogen-DNA damage, glutathione S-transferase genotypes, and risk of lung cancer in the prospective Physicians' Health Cohort Study,” Carcinogenesis, vol. 23, no. 10, pp. 1641–1646, 2002. View at Scopus
  111. W. J. Fu, A. J. Stromberg, K. Viele, R. J. Carroll, and G. Wu, “Statistics and bioinformatics in nutritional sciences: analysis of complex data in the era of systems biology,” Journal of Nutritional Biochemistry, vol. 21, no. 7, pp. 561–572, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. Z. Wu and H. Zhao, “Statistical power of model selection strategies for genome-wide association studies,” PLoS Genetics, vol. 5, no. 7, Article ID e1000582, 2009.
  113. K. John, N. Ragavan, M. M. Pratt et al., “Quantification of phase I/II metabolizing enzyme gene expression and polycyclic aromatic hydrocarbon-DNA adduct levels in human prostate,” Prostate, vol. 69, no. 5, pp. 505–519, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. P. R. Burton, A. L. Hansell, I. Fortier et al., “Size matters: just how big is BIG?: quantifying realistic sample size requirements for human genome epidemiology,” International Journal of Epidemiology, vol. 38, no. 1, pp. 263–273, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. R. Doll, “Nature and nurture: possibilities for cancer control,” Carcinogenesis, vol. 17, no. 2, pp. 177–184, 1996. View at Publisher · View at Google Scholar · View at Scopus
  116. T. Carreón, A. M. Ruder, P. A. Schulte, et al., “NAT2 slow acetylation and bladder cancer in workers exposed to benzidine,” International Journal of Cancer, vol. 118, no. 1, pp. 161–168, 2006.
  117. M. C. Miller, H. W. Mohrenweiser, and D. A. Bell, “Genetic variability in susceptibility and response to toxicants,” Toxicology Letters, vol. 120, no. 1–3, pp. 269–280, 2001. View at Publisher · View at Google Scholar · View at Scopus
  118. M. Ingelman-Sundberg, “Polymorphism of cytochrome P450 and xenobiotic toxicity,” Toxicology, vol. 181-182, pp. 447–452, 2002. View at Publisher · View at Google Scholar · View at Scopus
  119. L. R. Kidd, D. W. Hein, K. Woodson et al., “Lack of association of the N-acetyltransferase NAT1*10 allele with prostate cancer incidence, grade, or stage among smokers in Finland,” Biochemical Genetics, vol. 49, no. 1-2, pp. 73–82, 2011. View at Publisher · View at Google Scholar · View at Scopus
  120. Y. Lin, K. Yagyu, N. Egawa et al., “An overview of genetic polymorphisms and pancreatic cancer risk in molecular epidemiologic studies,” Journal of Epidemiology, vol. 21, no. 1, pp. 2–12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  121. B. K. Duncan and J. H. Miller, “Mutagenic deamination of cytosine residues in DNA,” Nature, vol. 287, no. 5782, pp. 560–561, 1980. View at Scopus
  122. C. Schmutte, A. S. Yang, T. T. Nguyen, R. W. Beart, and P. A. Jones, “Mechanisms for the involvement of DNA methylation in colon carcinogenesis,” Cancer Research, vol. 56, no. 10, pp. 2375–2381, 1996. View at Scopus
  123. S. E. Steck, M. M. Gaudet, J. A. Britton et al., “Interactions among GSTM1, GSTT1 and GSTP1 polymorphisms, cruciferous vegetable intake and breast cancer risk,” Carcinogenesis, vol. 28, no. 9, pp. 1954–1959, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. C. A. Gonzalez, E. Riboli, K. Overvad et al., “Diet and cancer prevention: contributions from the European Prospective Investigation into Cancer and Nutrition (EPIC) study,” European Journal of Cancer, vol. 46, no. 14, pp. 2555–2562, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. G. Masala, M. Assedi, B. Bendinelli, et al., “Fruit and vegetables consumption and breast cancer risk: the EPIC Italy study,” Breast Cancer Research and Treatment, vol. 132, no. 3, pp. 1127–1136, 2012.
  126. D. Palli, G. Masala, P. Vineis et al., “Biomarkers of dietary intake of micronutrients modulate DNA adduct levels in healthy adults,” Carcinogenesis, vol. 24, no. 4, pp. 739–746, 2003. View at Publisher · View at Google Scholar · View at Scopus
  127. M. Esteller, “The necessity of a human epigenome project,” Carcinogenesis, vol. 27, no. 6, pp. 1121–1125, 2006. View at Publisher · View at Google Scholar · View at Scopus
  128. M. Kulis and M. Esteller, “DNA methylation and cancer,” Advances in Genetics, vol. 70, pp. 27–56, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. S. Beck, “Taking the measure of the methylome,” Nature Biotechnology, vol. 28, no. 10, pp. 1026–1028, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. A. Murrell, V. K. Rakyan, and S. Beck, “From genome to epigenome,” Human Molecular Genetics, vol. 14, no. 1, pp. R3–R10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  131. L. Nonn, V. Ananthanarayanan, and P. H. Gann, “Evidence for field cancerization of the prostate,” Prostate, vol. 69, no. 13, pp. 1470–1479, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. D. J. Vander Griend, J. D'Antonio, B. Gurel, L. Antony, A. M. DeMarzo, and J. T. Isaacs, “Cell-autonomous intracellular androgen receptor signaling drives the growth of human prostate cancer initiating cells,” Prostate, vol. 70, no. 1, pp. 90–99, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. C. Tetta, E. Ghigo, L. Silengo, M. C. Deregibus, and G. Camussi, “Extracellular vesicles as an emerging mechanism of cell-to-cell communication,” Endocrine. In press. View at Publisher · View at Google Scholar
  134. Y. Lee, S. El Andaloussi, and M. J. Wood, “Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy,” Human Molecular Genetics, vol. 21, no. 1, pp. R125–R134, 2012.
  135. E. Gyorffy, L. Anna, K. Kovács, P. Rudnai, and B. Schoket, “Correlation between biomarkers of human exposure to genotoxins with focus on carcinogen-DNA adducts,” Mutagenesis, vol. 23, no. 1, pp. 1–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. Y. M. D. Lo, “Fetal DNA in maternal plasma: progress through epigenetics,” Annals of the New York Academy of Sciences, vol. 1075, pp. 74–80, 2006. View at Publisher · View at Google Scholar · View at Scopus
  137. J. G. Kelly, G. M. Najand, and F. L. Martin, “Characterisation of DNA methylation status using spectroscopy (mid-IR versus Raman) with multivariate analysis,” Journal of Biophotonics, vol. 4, no. 5, pp. 345–354, 2011. View at Publisher · View at Google Scholar · View at Scopus
  138. B. N. Ames and L. S. Gold, “Paracelsus to parascience: the environmental cancer distraction,” Mutation Research, vol. 447, no. 1, pp. 3–13, 2000. View at Publisher · View at Google Scholar · View at Scopus
  139. S. P. Hussain, L. J. Hofseth, and C. C. Harris, “Radical causes of cancer,” Nature Reviews Cancer, vol. 3, no. 4, pp. 276–285, 2003. View at Scopus