About this Journal Submit a Manuscript Table of Contents
ISRN Oncology
Volume 2013 (2013), Article ID 673793, 13 pages
http://dx.doi.org/10.1155/2013/673793
Review Article

Glioma Stem Cells and Immunotherapy for the Treatment of Malignant Gliomas

Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan

Received 3 March 2013; Accepted 27 March 2013

Academic Editors: A. E. Bilsland, M. Loizidou, C. Perez, and L.-M. Sun

Copyright © 2013 Masahiro Toda. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Kleihues, D. N. Louis, B. W. Scheithauer, et al., “The WHO classification of tumors of the nervous system,” Journal of Neuropathology and Experimental Neurology, vol. 61, no. 3, pp. 215–229, 2002.
  2. D. Bonnet and J. E. Dick, “Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell,” Nature Medicine, vol. 3, no. 7, pp. 730–737, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. S. K. Singh, I. D. Clarke, M. Terasaki et al., “Identification of a cancer stem cell in human brain tumors,” Cancer Research, vol. 63, no. 18, pp. 5821–5828, 2003. View at Scopus
  4. J. Lee, S. Kotliarova, Y. Kotliarov et al., “Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines,” Cancer Cell, vol. 9, no. 5, pp. 391–403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Chen, R. M. McKay, and L. F. Parada, “Malignant glioma: lessons from genomics, mouse models, and stem cells,” Cell, vol. 149, no. 1, pp. 36–47, 2012.
  6. A. Filatova, T. Acker, and B. K. Garvalov, “The cancer stem cell niche(s): the crosstalk between glioma stem cells and their microenvironment,” Biochimica et Biophysica Acta, vol. 1830, no. 2, pp. 2496–2508, 2013.
  7. A. B. Heimberger, L. E. Crotty, G. E. Archer et al., “Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors,” Clinical Cancer Research, vol. 9, no. 11, pp. 4247–4254, 2003. View at Scopus
  8. J. H. Sampson, A. B. Heimberger, G. E. Archer et al., “Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma,” Journal of Clinical Oncology, vol. 28, no. 31, pp. 4722–4729, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Yajima, R. Yamanaka, T. Mine et al., “Immunologic evaluation of personalized peptide vaccination for patients with advanced malignant glioma,” Clinical Cancer Research, vol. 11, no. 16, pp. 5900–5911, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Terasaki, S. Shibui, Y. Narita et al., “Phase I trial of a personalized peptide vaccine for patients positive for human leukocyte antigen-A24 with recurrent or progressive glioblastoma multiforme,” Journal of Clinical Oncology, vol. 29, no. 3, pp. 337–344, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Izumoto, A. Tsuboi, Y. Oka et al., “Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme,” Journal of Neurosurgery, vol. 108, no. 5, pp. 963–971, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Iwami, S. Shimato, M. Ohno, et al., “Peptide-pulsed dendritic cell vaccination targeting interleukin-13 receptor α2 chain in recurrent malignant glioma patients with HLA-A*24/A*02 allele,” Cytotherapy, vol. 14, no. 6, pp. 733–742, 2012.
  13. S. Pellegatta, P. L. Poliani, D. Corno et al., “Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas,” Cancer Research, vol. 66, no. 21, pp. 10247–10252, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. Q. Xu, G. Liu, X. Yuan et al., “Antigen-specific T-cell response from dendritic cell vaccination using cancer stem-like cell-associated antigens,” Stem Cells, vol. 27, no. 8, pp. 1734–1740, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Schmitz, A. Temme, V. Senner et al., “Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy,” The British Journal of Cancer, vol. 96, no. 8, pp. 1293–1301, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Ueda, K. Ohkusu-Tsukada, N. Fusaki et al., “Identification of HLA-A2- And A24-restricted T-cell epitopes derived from SOX6 expressed in glioma stem cells for immunotherapy,” International Journal of Cancer, vol. 126, no. 4, pp. 919–929, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. D. N. Louis, H. Ohgaki, O. D. Wiestler et al., “The 2007 WHO classification of tumours of the central nervous system,” Acta Neuropathologica, vol. 114, no. 2, pp. 97–109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. D. W. Parsons, S. Jones, X. Zhang et al., “An integrated genomic analysis of human glioblastoma multiforme,” Science, vol. 321, no. 5897, pp. 1807–1812, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. R. McLendon, A. Friedman, D. Bigner et al., “Comprehensive genomic characterization defines human glioblastoma genes and core pathways,” Nature, vol. 455, no. 7216, pp. 1061–1068, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Kleihues and H. Ohgaki, “Primary and secondary glioblastomas: from concept to clinical diagnosis,” Neuro-Oncology, vol. 1, no. 1, pp. 44–51, 1999. View at Scopus
  21. H. Ohgaki and P. Kleihues, “Genetic pathways to primary and secondary glioblastoma,” The American Journal of Pathology, vol. 170, no. 5, pp. 1445–1453, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. E. A. Maher, C. Brennan, P. Y. Wen et al., “Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities,” Cancer Research, vol. 66, no. 23, pp. 11502–11513, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. C. L. Tso, W. A. Freije, A. Day et al., “Distinct transcription profiles of primary and secondary glioblastoma subgroups,” Cancer Research, vol. 66, no. 1, pp. 159–167, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Yan, D. W. Parsons, G. Jin et al., “IDH1 and IDH2 mutations in gliomas,” The New England Journal of Medicine, vol. 360, no. 8, pp. 765–773, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Noushmehr, D. J. Weisenberger, K. Diefes et al., “Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma,” Cancer Cell, vol. 17, no. 5, pp. 510–522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. S. L. Gerson, “Clinical relevance of MGMT in the treatment of cancer,” Journal of Clinical Oncology, vol. 20, no. 9, pp. 2388–2399, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. M. E. Hegi, A. C. Diserens, T. Gorlia et al., “MGMT gene silencing and benefit from temozolomide in glioblastoma,” The New England Journal of Medicine, vol. 352, no. 10, pp. 997–1003, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Rafii, D. Lyden, R. Benezra, K. Hattori, and B. Heissig, “Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy?” Nature Reviews Cancer, vol. 2, no. 11, pp. 826–835, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. G. L. Semenza, “Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics,” Oncogene, vol. 29, no. 5, pp. 625–634, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Rong, D. L. Durden, E. G. Van Meir, and D. J. Brat, “‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis,” Journal of Neuropathology and Experimental Neurology, vol. 65, no. 6, pp. 529–539, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. J. M. Heddleston, Z. Li, J. D. Lathia, S. Bao, A. B. Hjelmeland, and J. N. Rich, “Hypoxia inducible factors in cancer stem cells,” The British Journal of Cancer, vol. 102, no. 5, pp. 789–795, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Kowanetz and N. Ferrara, “Vascular endothelial growth factor signaling pathways: therapeutic perspective,” Clinical Cancer Research, vol. 12, no. 17, pp. 5018–5022, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. L. A. Sullivan and R. A. Brekken, “The VEGF family in cancer and antibody-based strategies for their inhibition,” MAbs, vol. 2, no. 2, pp. 165–175, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Carmeliet, L. Moons, A. Luttun et al., “Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions,” Nature Medicine, vol. 7, no. 5, pp. 575–583, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. D. J. Hicklin and L. M. Ellis, “Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis,” Journal of Clinical Oncology, vol. 23, no. 5, pp. 1011–1027, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. S. J. Grau, F. Trillsch, J. Herms et al., “Expression of VEGFR3 in glioma endothelium correlates with tumor grade,” Journal of Neuro-Oncology, vol. 82, no. 2, pp. 141–150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. R. N. Kaplan, R. D. Riba, S. Zacharoulis et al., “VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche,” Nature, vol. 438, no. 7069, pp. 820–827, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Knizetova, J. Ehrmann, A. Hlobilkova et al., “Autocrine regulation of glioblastoma cell cycle progression, viability and radioresistance through the VEGF-VEGFR2 (KDR) interplay,” Cell Cycle, vol. 7, no. 16, pp. 2553–2561, 2008. View at Scopus
  39. S. Dias, K. Hattori, Z. Zhu et al., “Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration,” Journal of Clinical Investigation, vol. 106, no. 4, pp. 511–521, 2000. View at Scopus
  40. B. Jenny, J. A. Harrison, D. Baetens et al., “Expression and localization of VEGF-C and VEGFR-3 in glioblastomas and haemangioblastomas,” Journal of Pathology, vol. 209, no. 1, pp. 34–43, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. M. F. Clarke, J. E. Dick, P. B. Dirks et al., “Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells,” Cancer Research, vol. 66, no. 19, pp. 9339–9344, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. A. L. Vescovi, R. Galli, and B. A. Reynolds, “Brain tumour stem cells,” Nature Reviews Cancer, vol. 6, no. 6, pp. 425–436, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. S. K. Singh, C. Hawkins, I. D. Clarke et al., “Identification of human brain tumour initiating cells,” Nature, vol. 432, no. 7015, pp. 396–401, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Pastrana, V. Silva-Vargas, and F. Doetsch, “Eyes wide open: a critical review of sphere-formation as an assay for stem cells,” Cell Stem Cell, vol. 8, no. 5, pp. 486–498, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Beier, P. Hau, M. Proescholdt et al., “CD133+ and CD133 glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles,” Cancer Research, vol. 67, no. 9, pp. 4010–4015, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. K. M. Joo, S. Y. Kim, X. Jin et al., “Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas,” Laboratory Investigation, vol. 88, no. 8, pp. 808–815, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Chen, M. C. Nishimura, S. M. Bumbaca et al., “A Hierarchy of self-renewing tumor-initiating cell types in glioblastoma,” Cancer Cell, vol. 17, no. 4, pp. 362–375, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. S. G. M. Piccirillo, R. Combi, L. Cajola et al., “Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution,” Oncogene, vol. 28, no. 15, pp. 1807–1811, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Roesch, M. Fukunaga-Kalabis, E. C. Schmidt et al., “A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth,” Cell, vol. 141, no. 4, pp. 583–594, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Dean, T. Fojo, and S. Bates, “Tumour stem cells and drug resistance,” Nature Reviews Cancer, vol. 5, no. 4, pp. 275–284, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Salmaggi, A. Boiardi, M. Gelati et al., “Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype,” Glia, vol. 54, no. 8, pp. 850–860, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. M. K. Kang and S. K. Kang, “Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma,” Stem Cells and Development, vol. 16, no. 5, pp. 837–847, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Persano, E. Rampazzo, G. Basso, and G. Viola, “Glioblastoma cancer stem cells: role of the microenvironment and therapeutic targeting,” Biochemical Pharmacology, vol. 85, no. 5, pp. 612–622, 2013.
  54. S. Bao, Q. Wu, R. E. McLendon et al., “Glioma stem cells promote radioresistance by preferential activation of the DNA damage response,” Nature, vol. 444, no. 7120, pp. 756–760, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Beier, S. Röhrl, D. R. Pillai et al., “Temozolomide preferentially depletes cancer stem cells in glioblastoma,” Cancer Research, vol. 68, no. 14, pp. 5706–5715, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. V. Clement, P. Sanchez, N. de Tribolet, I. Radovanovic, and A. Ruiz i Altaba, “HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity,” Current Biology, vol. 17, no. 2, pp. 165–172, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. K. A. Moore and I. R. Lemischka, “Stem cells and their niches,” Science, vol. 311, no. 5769, pp. 1880–1885, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. Z. Huang, L. Cheng, O. A. Guryanova, Q. Wu, and S. Bao, “Cancer stem cells in glioblastoma-molecular signaling and therapeutic targeting,” Protein and Cell, vol. 1, no. 7, pp. 638–655, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. M. C. Tate and M. K. Aghi, “Biology of angiogenesis and invasion in glioma,” Neurotherapeutics, vol. 6, no. 3, pp. 447–457, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. K. E. Hovinga, L. J. A. Stalpers, C. van Bree et al., “Radiation-enhanced vascular endothelial growth factor (VEGF) secretion in glioblastoma multiforme cell lines—a clue to radioresistance?” Journal of Neuro-Oncology, vol. 74, no. 2, pp. 99–103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. D. H. Gorski, M. A. Beckett, N. T. Jaskowiak et al., “Blockade of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation,” Cancer Research, vol. 59, no. 14, pp. 3374–3378, 1999. View at Scopus
  62. T. D. Palmer, A. R. Willhoite, and F. H. Gage, “Vascular niche for adult hippocampal neurogenesis,” The Journal of Comparative Neurology, vol. 425, no. 4, pp. 479–494, 2000.
  63. C. Calabrese, H. Poppleton, M. Kocak et al., “A perivascular niche for brain tumor stem cells,” Cancer Cell, vol. 11, no. 1, pp. 69–82, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. Q. Shen, S. K. Goderie, L. Jin et al., “Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells,” Science, vol. 304, no. 5675, pp. 1338–1340, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. L. Ricci-Vitiani, R. Pallini, M. Biffoni et al., “Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells,” Nature, vol. 468, no. 7325, pp. 824–828, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Wang, K. Chadalavada, J. Wilshire et al., “Glioblastoma stem-like cells give rise to tumour endothelium,” Nature, vol. 468, no. 7325, pp. 829–833, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Clarke and D. Van Der Kooy, “Low oxygen enhances primitive and definitive neural stem cell colony formation by inhibiting distinct cell death pathways,” Stem Cells, vol. 27, no. 8, pp. 1879–1886, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. Z. Li, S. Bao, Q. Wu et al., “Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells,” Cancer Cell, vol. 15, no. 6, pp. 501–513, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. J. M. Heddleston, Z. Li, R. E. McLendon, A. B. Hjelmeland, and J. N. Rich, “The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype,” Cell Cycle, vol. 8, no. 20, pp. 3274–3284, 2009. View at Scopus
  70. A. M. McCord, M. Jamal, U. T. Shankavarum, F. F. Lang, K. Camphausen, and P. J. Tofilon, “Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro,” Molecular Cancer Research, vol. 7, no. 4, pp. 489–497, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Bao, Q. Wu, S. Sathornsumetee et al., “Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor,” Cancer Research, vol. 66, no. 16, pp. 7843–7848, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. N. Ferrara, H. P. Gerber, and J. LeCouter, “The biology of VEGF and its receptors,” Nature Medicine, vol. 9, no. 6, pp. 669–676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. W. F. Hickey, “Basic principles of immunological surveillance of the normal central nervous system,” Glia, vol. 36, no. 2, pp. 118–124, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. B. Becher, A. Prat, and J. P. Antel, “Brain-immune connection: immuno-regulatory properties of CNS-resident cells,” Glia, vol. 29, no. 4, pp. 293–304, 2000.
  75. S. Kuchler-Bopp, J. P. Delaunoy, J. C. Artault, M. Zaepfel, and J. B. Dietrich, “Astrocytes induce several blood-brain barrier properties in non-neural endothelial cells,” NeuroReport, vol. 10, no. 6, pp. 1347–1353, 1999. View at Scopus
  76. H. Akiyama, T. Kondoh, T. Kokunai, T. Nagashima, N. Saito, and N. Tamaki, “Blood-brain barrier formation of grafted human umbilical vein endothelial cells in athymic mouse brain,” Brain Research, vol. 858, no. 1, pp. 172–176, 2000. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Bart, H. J. M. Groen, N. H. Hendrikse, W. T. A. van der Graaf, W. Vaalburg, and E. G. E. de Vries, “The blood-brain barrier and oncology: new insights into function and modulation,” Cancer Treatment Reviews, vol. 26, no. 6, pp. 449–462, 2000. View at Publisher · View at Google Scholar · View at Scopus
  78. W. F. Hickey, “Leukocyte traffic in the central nervous system: the participants and their roles,” Seminars in Immunology, vol. 11, no. 2, pp. 125–137, 1999. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Flügel, M. Willem, T. Berkowicz, and H. Wekerle, “Gene transfer into CD4+ T lymphocytes: green fluorescent protein- engineered, encephalitogenic T cells illuminate brain autoimmune responses,” Nature Medicine, vol. 5, no. 7, pp. 843–847, 1999. View at Publisher · View at Google Scholar · View at Scopus
  80. R. B. Fritz, X. Wang, and M. L. Zhao, “The fate of adoptively transferred quiescent encephalitogenic T cells in normal and antigen-tolerized mice,” Journal of Neuroimmunology, vol. 107, no. 1, pp. 66–72, 2000. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Kerschensteiner, E. Gallmeier, L. Behrens et al., “Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation?” Journal of Experimental Medicine, vol. 189, no. 5, pp. 865–870, 1999. View at Publisher · View at Google Scholar · View at Scopus
  82. J. Bauer, M. Bradl, W. F. Hickey et al., “T-cell apoptosis in inflammatory brain lesions: destruction of T cells does not depend on antigen recognition,” The American Journal of Pathology, vol. 153, no. 3, pp. 715–724, 1998. View at Scopus
  83. A. Flügel, F. W. Schwaiger, H. Neumann et al., “Neuronal FasL induces cell death of encephalitogenic T lymphocytes,” Brain Pathology, vol. 10, no. 3, pp. 353–364, 2000. View at Scopus
  84. G. C. Suvannavejh, M. C. Dal Canto, L. A. Matis, and S. D. Miller, “Fas-mediated apoptosis in clinical remissions of relapsing experimental autoimmune encephalomyelitis,” Journal of Clinical Investigation, vol. 105, no. 2, pp. 223–231, 2000. View at Scopus
  85. D. N. Irani, “Brain-derived gangliosides induce cell cycle arrest in a murine T cell line,” Journal of Neuroimmunology, vol. 87, no. 1-2, pp. 11–16, 1998. View at Publisher · View at Google Scholar · View at Scopus
  86. Z. Qing, D. Sewell, M. Sandor, and Z. Fabry, “Antigen-specific T cell trafficking into the central nervous system,” Journal of Neuroimmunology, vol. 105, no. 2, pp. 169–178, 2000. View at Publisher · View at Google Scholar · View at Scopus
  87. E. Albesiano, J. E. Han, and M. Lim, “Mechanisms of Local Immunoresistance in Glioma,” Neurosurgery Clinics of North America, vol. 21, no. 1, pp. 17–29, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Facoetti, R. Nano, P. Zelini et al., “Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors,” Clinical Cancer Research, vol. 11, no. 23, pp. 8304–8311, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. D. Gabrilovich, “Mechanisms and functional significance of tumour-induced dendritic-cell defects,” Nature Reviews Immunology, vol. 4, no. 12, pp. 941–952, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. R. Lang, D. Patel, J. J. Morris, R. L. Rutschman, and P. J. Murray, “Shaping gene expression in activated and resting primary macrophages by IL-10,” Journal of Immunology, vol. 169, no. 5, pp. 2253–2263, 2002. View at Scopus
  91. A. Mancino and T. Lawrence, “Nuclear factor-κB and tumor-associated macrophages,” Clinical Cancer Research, vol. 16, no. 3, pp. 784–789, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. E. C. Brantley and E. N. Benveniste, “Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas,” Molecular Cancer Research, vol. 6, no. 5, pp. 675–684, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. T. di Tomaso, S. Mazzoleni, E. Wang et al., “Immunobiological characterization of cancer stem cells isolated from glioblastoma patients,” Clinical Cancer Research, vol. 16, no. 3, pp. 800–813, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. M. P. Gustafson, Y. Lin, K. C. New et al., “Systemic immune suppression in glioblastoma: the interplay between CD14+HLA-DRlo/neg monocytes, tumor factors, and dexamethasone,” Neuro-Oncology, vol. 12, no. 7, pp. 631–644, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. Y. T. Chen, M. J. Scanlan, U. Sahin et al., “A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 5, pp. 1914–1918, 1997. View at Publisher · View at Google Scholar · View at Scopus
  96. T. Kuramoto, “Detection of MAGE-1 tumor antigen in brain tumor,” Kurume Medical Journal, vol. 44, no. 1, pp. 43–51, 1997. View at Scopus
  97. R. Ueda, K. Yoshida, Y. Kawakami, T. Kawase, and M. Toda, “Expression of a transcriptional factor, SOX6, in human gliomas,” Brain Tumor Pathology, vol. 21, no. 1, pp. 35–38, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. D. D. J. Chi, R. E. Merchant, R. Rand et al., “Molecular detection of tumor-associated antigens shared by human cutaneous melanomas and gliomas,” The American Journal of Pathology, vol. 150, no. 6, pp. 2143–2152, 1997. View at Scopus
  99. G. Liu, H. Ying, G. Zeng, C. J. Wheeler, K. L. Black, and J. S. Yu, “HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells,” Cancer Research, vol. 64, no. 14, pp. 4980–4986, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. F. Okano, W. J. Storkus, W. H. Chambers, I. F. Pollack, and H. Okada, “Identification of a novel HLA-A*0201-restricted, cytotoxic T lymphocyte epitope in a human glioma-associated antigen, interleukin 13 receptor α2 chain,” Clinical Cancer Research, vol. 8, no. 9, pp. 2851–2855, 2002. View at Scopus
  101. M. Hatano, J. Eguchi, T. Tatsumi et al., “EphA2 as a glioma-associated antigen: a novel target for glioma vaccines,” Neoplasia, vol. 7, no. 8, pp. 717–722, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. M. Jin, Y. Komohara, S. Shichijo et al., “Identification of EphB6 variant-derived epitope peptides recognized by cytotoxic T-lymphocytes from HLA-A24+ malignant glioma patients,” Oncology Reports, vol. 19, no. 5, pp. 1277–1283, 2008. View at Scopus
  103. G. Liu, J. S. Yu, G. Zeng et al., “AIM-2: a novel tumor antigen is expressed and presented by human glioma cells,” Journal of Immunotherapy, vol. 27, no. 3, pp. 220–226, 2004. View at Scopus
  104. T. Hashiba, S. Izumoto, N. Kagawa et al., “Expression of WT1 protein and correlation with cellular proliferation in glial tumors,” Neurologia Medico-Chirurgica, vol. 47, no. 4, pp. 165–170, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. Y. Nonaka, N. Tsuda, S. Shichijo et al., “Recognition of ADP-ribosylation factor 4-like by HLA-A2-restricted and tumor-reactive cytotoxic T lymphocytes from patients with brain tumors,” Tissue Antigens, vol. 60, no. 4, pp. 319–327, 2002. View at Publisher · View at Google Scholar · View at Scopus
  106. K. Murayama, T. Kobayashi, T. Imaizumi et al., “Expression of the SART3 tumor-rejection antigen in brain tumors and induction of cytotoxic T lymphocytes by its peptides,” Journal of Immunotherapy, vol. 23, no. 5, pp. 511–518, 2000. View at Publisher · View at Google Scholar · View at Scopus
  107. M. Schmitz, R. Wehner, S. Stevanovic et al., “Identification of a naturally processed T cell epitope derived from the glioma-associated protein SOX11,” Cancer Letters, vol. 245, no. 1-2, pp. 331–336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Harada, Y. Ishihara, K. Itoh, and R. Yamanaka, “Kinesin superfamily protein-derived peptides with the ability to induce glioma-reactive cytotoxic T lymphocytes in human leukocyte antigen-A24+ glioma patients,” Oncology Reports, vol. 17, no. 3, pp. 629–636, 2007. View at Scopus
  109. M. A. Cheever, J. P. Allison, A. S. Ferris et al., “The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research,” Clinical Cancer Research, vol. 15, no. 17, pp. 5323–5337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. S. A. Rosenberg, “A new era for cancer immunotherapy based on the genes that encode cancer antigens,” Immunity, vol. 10, no. 3, pp. 281–287, 1999. View at Scopus
  111. H. E. Fuchs, G. E. Archer, O. M. Colvin et al., “Activity of intrathecal 4-hydroperoxycyclophosphamide in a nude rat model of human neoplastic meningitis,” Cancer Research, vol. 50, no. 6, pp. 1954–1959, 1990. View at Scopus
  112. E. D. Day, S. Lassiter, B. Woodhall, J. L. Mahaley, and M. S. Mahaley, “The localization of radioantibodies in human brain tumors. I. Preliminary exploration,” Cancer Research, vol. 25, no. 6, pp. 773–778, 1965. View at Scopus
  113. D. S. Bidros and M. A. Vogelbaum, “Novel drug delivery strategies in neuro-oncology,” Neurotherapeutics, vol. 6, no. 3, pp. 539–546, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. N. A. de Vries, J. H. Beijnen, W. Boogerd, and O. Van Tellingen, “Blood-brain barrier and chemotherapeutic treatment of brain tumors,” Expert Review of Neurotherapeutics, vol. 6, no. 8, pp. 1199–1209, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. D. D. Bigner, M. Brown, R. E. Coleman et al., “Phase I studies of treatment of malignant gliomas and neoplastic meningitis with 131I-radiolabeled monoclonal antibodies anti-tenascin 81C6 and anti-chondroitin proteoglycan sulfate Me1-14 F(ab')2—a preliminary report,” Journal of Neuro-Oncology, vol. 24, no. 1, pp. 109–122, 1995. View at Publisher · View at Google Scholar · View at Scopus
  116. S. N. Kurpad, X. G. Zhao, C. J. Wikstrand, S. K. Batra, R. E. McLendon, and D. D. Bigner, “Tumor antigens in astrocytic gliomas,” Glia, vol. 15, no. 3, pp. 244–256, 1995.
  117. P. Riva, A. Arista, G. Franceschi et al., “Local treatment of malignant gliomas by direct infusion of specific monoclonal antibodies labeled with131I: comparison of the results obtained in recurrent and newly diagnosed tumors,” Cancer Research, vol. 55, no. 23, supplement, pp. 5952s–5956s, 1995. View at Scopus
  118. J. E. Murphy-Ullrich, V. A. Lightner, I. Aukhil, Y. Z. Yan, H. P. Erickson, and M. Hook, “Focal adhesion integrity is downregulated by the alternatively spliced domain of human tenascin,” Journal of Cell Biology, vol. 115, no. 4, pp. 1127–1136, 1991. View at Scopus
  119. J. L. Eller, S. L. Longo, D. J. Hicklin et al., “Activity of anti-epidermal growth factor receptor monoclonal antibody C225 against glioblastoma multiforme,” Neurosurgery, vol. 51, no. 4, pp. 1005–1014, 2002. View at Publisher · View at Google Scholar · View at Scopus
  120. B. Neyns, J. Sadones, E. Joosens et al., “Stratified phase II trial of cetuximab in patients with recurrent high-grade glioma,” Annals of Oncology, vol. 20, no. 9, pp. 1596–1603, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. C. J. Wikstrand, R. E. McLendon, A. H. Friedman, and D. D. Bigner, “Cell surface localization and density of the tumor-associated variant of the epidermal growth factor receptor, EGFRvIII,” Cancer Research, vol. 57, no. 18, pp. 4130–4140, 1997. View at Scopus
  122. A. M. Scott, F. T. Lee, N. Tebbutt et al., “Erratum: a phase I clinical trial with monoclonal antibody ch806 targeting transitional state and mutant epidermal growth factor receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 40, pp. 4071–4076, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. S. K. Jacobs, D. J. Wilson, P. L. Kornblith, and E. A. Grimm, “Interleukin-2 and autologous lymphokine-activated killer cells in the treatment of malignant glioma. Preliminary report,” Journal of Neurosurgery, vol. 64, no. 5, pp. 743–749, 1986. View at Scopus
  124. S. Yoshida, R. Tanaka, N. Takai, and K. Ono, “Local administration of autologous lymphokine-activated killer cells and recombinant interleukin 2 to patients with malignant brain tumors,” Cancer Research, vol. 48, no. 17, pp. 5011–5016, 1988. View at Scopus
  125. R. E. Merchant, L. H. Merchant, S. H. S. Cook, D. W. McVicar, and H. F. Young, “Intralesional infusion of lymphokine-activated killer (LAK) cells and recombinant Interleukin-2 (rIL-2) for the treatment of patients with malignant brain tumor,” Neurosurgery, vol. 23, no. 6, pp. 725–732, 1988. View at Scopus
  126. D. Barba, S. C. Saris, C. Holder, S. A. Rosenberg, and E. H. Oldfield, “Intratumoral LAK cell and interleukin-2 therapy of human gliomas,” Journal of Neurosurgery, vol. 70, no. 2, pp. 175–182, 1989. View at Scopus
  127. A. Boiardi, A. Silvani, P. A. Ruffini et al., “Loco-regional immunotherapy with recombinant interleukin-2 and adherent lymphokine-activated killer cells (A-LAK) in recurrent glioblastoma patients,” Cancer Immunology Immunotherapy, vol. 39, no. 3, pp. 193–197, 1994. View at Scopus
  128. C. A. Kruse, P. M. Schiltz, D. Bellgrau, Q. Kong, and B. K. Kleinschmidt-DeMasters, “Intracranial administrations of single or multiple source allogeneic cytotoxic T lymphocytes: chronic therapy for primary brain tumors,” Journal of Neuro-Oncology, vol. 19, no. 2, pp. 161–168, 1994. View at Publisher · View at Google Scholar · View at Scopus
  129. R. L. Hayes, M. Koslow, E. M. Hiesiger, et al., “Improved long term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma,” Cancer, vol. 76, no. 5, pp. 840–852, 1995.
  130. F. P. Holladay, T. Heitz-Turner, W. L. Bayer, and G. W. Wood, “Autologous tumor cell vaccination combined with adoptive cellular immunotherapy in patients with Grade III/IV astrocytoma,” Journal of Neuro-Oncology, vol. 27, no. 2, pp. 179–189, 1996. View at Scopus
  131. G. E. Plautz, G. H. Barnett, D. W. Miller et al., “Systemic T cell adoptive immunotherapy of malignant gliomas,” Journal of Neurosurgery, vol. 89, no. 1, pp. 42–51, 1998. View at Scopus
  132. L. Bracci, F. Moschella, P. Sestili et al., “Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B-cell and T-cell homeostatic proliferation, and specific tumor infiltration,” Clinical Cancer Research, vol. 13, no. 2, pp. 644–653, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. K. S. Kahlon, C. Brown, L. J. N. Cooper, A. Raubitschek, S. J. Forman, and M. C. Jensen, “Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells,” Cancer Research, vol. 64, no. 24, pp. 9160–9166, 2004. View at Publisher · View at Google Scholar · View at Scopus
  134. N. Ahmed, V. S. Salsman, Y. Kew et al., “HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors,” Clinical Cancer Research, vol. 16, no. 2, pp. 474–485, 2010. View at Publisher · View at Google Scholar · View at Scopus
  135. R. Yamanaka, “Cell- and peptide-based immunotherapeutic approaches for glioma,” Trends in Molecular Medicine, vol. 14, no. 5, pp. 228–235, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. Y. Kawakami and S. A. Rosenberg, “Human tumor antigens recognized by T-cells,” Immunologic Research, vol. 16, no. 4, pp. 313–339, 1997. View at Scopus
  137. J. Gong, D. Chen, M. Kashiwaba, and D. Kufe, “Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells,” Nature Medicine, vol. 3, no. 5, pp. 558–561, 1997. View at Scopus
  138. B. Thurner, I. Haendle, C. Röder et al., “Vaccination with Mage-3A1 peptide-pulsed nature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma,” Journal of Experimental Medicine, vol. 190, no. 11, pp. 1669–1678, 1999. View at Publisher · View at Google Scholar · View at Scopus
  139. A. Kugler, G. Stuhler, P. Walden et al., “Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids,” Nature Medicine, vol. 6, no. 3, pp. 332–336, 2000. View at Publisher · View at Google Scholar · View at Scopus
  140. P. A. Lodge, L. A. Jones, R. A. Bader, G. P. Murphy, and M. L. Salgaller, “Dendritic cell-based immunotherapy of prostate cancer: immune monitoring of a phase II clinical trial,” Cancer Research, vol. 60, no. 4, pp. 829–833, 2000. View at Scopus
  141. J. S. Yu, C. J. Wheeler, P. M. Zeltzer et al., “Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration,” Cancer Research, vol. 61, no. 3, pp. 842–847, 2001. View at Scopus
  142. T. Kikuchi, Y. Akasaki, M. Irie, S. Homma, T. Abe, and T. Ohno, “Results of a phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells,” Cancer Immunology, Immunotherapy, vol. 50, no. 7, pp. 337–344, 2001. View at Publisher · View at Google Scholar · View at Scopus
  143. H. Ardon, S. W. van Gool, T. Verschuere, et al., “Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: results of the HGG-2006 phase I/II trial,” Cancer Immunol Immunother, vol. 61, no. 11, pp. 2033–2044, 2012.
  144. S. A. Rosenberg, J. C. Yang, and N. P. Restifo, “Cancer immunotherapy: moving beyond current vaccines,” Nature Medicine, vol. 10, no. 9, pp. 909–915, 2004. View at Publisher · View at Google Scholar · View at Scopus
  145. J. H. Sampson, G. E. Archer, D. A. Mitchell, A. B. Heimberger, and D. D. Bigner, “Tumor-specific immunotherapy targeting the EGFRvIII mutation in patients with malignant glioma,” Seminars in Immunology, vol. 20, no. 5, pp. 267–275, 2008. View at Publisher · View at Google Scholar · View at Scopus
  146. R. Stupp, W. P. Mason, M. J. van den Bent et al., “Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma,” The New England Journal of Medicine, vol. 352, no. 10, pp. 987–996, 2005. View at Publisher · View at Google Scholar · View at Scopus
  147. Y. Oka, A. Tsuboi, O. A. Elisseeva, K. Udaka, and H. Sugiyama, “WT1 as a novel target antigen for cancer immunotherapy,” Current Cancer Drug Targets, vol. 2, no. 1, pp. 45–54, 2002. View at Publisher · View at Google Scholar · View at Scopus
  148. T. Mine, Y. Sato, M. Noguchi et al., “Humoral responses to peptides correlate with overall survival in advanced cancer patients vaccinated with peptides based on pre-existing, peptide-specific cellular responses,” Clinical Cancer Research, vol. 10, no. 3, pp. 929–937, 2004. View at Publisher · View at Google Scholar · View at Scopus
  149. Q. Xu, X. Yuan, and J. S. Yu, “Glioma stem cell research for the development of immunotherapy,” Advances in Experimental Medicine and Biology, vol. 746, pp. 216–225, 2012.
  150. Z. Li, J. W. Lee, D. Mukherjee, et al., “Immunotherapy targeting glioma stem cells—insights and perspectives,” Expert Opinion on Biological Therapy, vol. 12, no. 2, pp. 165–178, 2012.
  151. M. Toda, “Cancer vaccine for brain tumors and brain tumor antigens,” Cancer Therapy, vol. 2, pp. 21–26, 2004.
  152. R. Ueda, Y. Iizuka, K. Yoshida, T. Kawase, Y. Kawakami, and M. Toda, “Identification of a human glioma antigen, SOX6, recognized by patients' sera,” Oncogene, vol. 23, no. 7, pp. 1420–1427, 2004. View at Publisher · View at Google Scholar · View at Scopus
  153. J. J. Vredenburgh, A. Desjardins, J. E. Herndon 2nd et al., “Bevacizumab plus irinotecan in recurrent glioblastoma multiforme,” Journal of Clinical Oncology, vol. 25, no. 30, pp. 4722–4729, 2007. View at Publisher · View at Google Scholar · View at Scopus
  154. A. Lai, A. Tran, P. L. Nghiemphu et al., “Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme,” Journal of Clinical Oncology, vol. 29, no. 2, pp. 142–148, 2011. View at Publisher · View at Google Scholar · View at Scopus
  155. M. C. Chamberlain and S. K. Johnston, “Salvage therapy with single agent bevacizumab for recurrent glioblastoma,” Journal of Neuro-Oncology, vol. 96, no. 2, pp. 259–269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. A. D. Norden, G. S. Young, K. Setayesh et al., “Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence,” Neurology, vol. 70, no. 10, pp. 779–787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  157. H. Hayashi, T. Kurata, Y. Fujisaka, et al., “Phase I trial of OTS11101, an anti-angiogenic vaccine targeting vascular endothelial growth factor receptor 1 in solid tumor,” Cancer Science, vol. 104, no. 1, pp. 98–104, 2013.
  158. M. Miyazawa, R. Ohsawa, T. Tsunoda et al., “Phase I clinical trial using peptide vaccine for human vascular endothelial growth factor receptor 2 in combination with gemcitabine for patients with advanced pancreatic cancer,” Cancer Science, vol. 101, no. 2, pp. 433–439, 2010. View at Publisher · View at Google Scholar · View at Scopus
  159. A. Matejuk, Q. Leng, S. T. Chou, and A. J. Mixson, “Vaccines targeting the neovasculature of tumors,” Vascular Cell, vol. 3, article 7, 2011. View at Publisher · View at Google Scholar · View at Scopus
  160. D. J. Hicklin, F. M. Marincola, and S. Ferrone, “HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story,” Molecular Medicine Today, vol. 5, no. 4, pp. 178–186, 1999. View at Publisher · View at Google Scholar · View at Scopus
  161. S. Yasuda, I. Tsuchiya, K. Okada, et al., “Significant clinical response of advanced colon cancer to peptide vaccine therapy: a case report,” The Tokai Journal of Experimental and Clinical Medicine, vol. 37, no. 2, pp. 57–61, 2012.