About this Journal Submit a Manuscript Table of Contents
ISRN Oncology
Volume 2013 (2013), Article ID 697521, 25 pages
http://dx.doi.org/10.1155/2013/697521
Review Article

The Role of Chronic Inflammation in Obesity-Associated Cancers

Department of Pathology and Department of Medical Laboratory Sciences, University of Vermont, Burlington, VT, USA

Received 17 April 2013; Accepted 12 May 2013

Academic Editors: P. Balaram, I. Faraoni, L. Hunakova, P. Karakitsos, and B. Luber

Copyright © 2013 Maria E. Ramos-Nino. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Shacter and S. A. Weitzman, “Chronic inflammation and cancer,” Oncology, vol. 16, no. 2, pp. 217–232, 2002. View at Scopus
  2. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Scopus
  3. S. Rakoff-Nahoum, “Why cancer and inflammation?” Yale Journal of Biology and Medicine, vol. 79, no. 3-4, pp. 123–130, 2006. View at Scopus
  4. M. E. Ramos-Nino, J. R. Testa, D. A. Altomare et al., “Cellular and molecular parameters of mesothelioma,” Journal of Cellular Biochemistry, vol. 98, no. 4, pp. 723–734, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. C. D. Woodworth, B. T. Mossman, and J. E. Craighead, “Squamous metaplasia of the respiratory tract. Possible pathogenic role in asbestos-associated bronchogenic carcinoma,” Laboratory Investigation, vol. 48, no. 5, pp. 578–584, 1983. View at Scopus
  6. P. T. Scheepers and R. C. Vermeulen, “Diesel engine exhaust classified as a human lung carcinogen. How will this affect occupational exposures?” Occupational and Environmental Medicine, vol. 69, no. 10, pp. 691–693, 2012.
  7. D. P. Zandberg, R. Bhargava, S. Badin, and K. J. Cullen, “The role of human papillomavirus in nongenital cancers,” A Cancer Journal for Clinicians, vol. 63, no. 1, pp. 57–81, 2013. View at Publisher · View at Google Scholar
  8. E. Smolle, E. Zöhrer, K. Bettermann, and J. Haybaeck, “Viral hepatitis induces hepatocellular cancer: what can we learn from epidemiology comparing iran and worldwide findings?” Hepatitis Monthly, vol. 12, no. 10 HCC, Article ID e7879, 2012.
  9. W. Gu, C. Chen, and K. N. Zhao, “Obesity-associated endometrial and cervical cancers,” Frontiers in Bioscience, vol. E5, pp. 109–118, 2013.
  10. E. Orgel and S. D. Mittelman, “The links between insulin resistance, diabetes, and cancer,” Current Diabetes Reports, vol. 13, no. 2, pp. 213–222, 2013. View at Publisher · View at Google Scholar
  11. R. N. Saladi and A. N. Persaud, “The causes of skin cancer: a comprehensive review,” Drugs of Today, vol. 41, no. 1, pp. 37–53, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. N. E. Sounni and A. Noel, “Targeting the tumor microenvironment for cancer therapy,” Clinical Chemistry, vol. 59, no. 1, pp. 85–93, 2013. View at Publisher · View at Google Scholar
  13. F. Balkwill and A. Mantovani, “Inflammation and cancer: back to Virchow?” The Lancet, vol. 357, no. 9255, pp. 539–545, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. D. W. Kamp, E. Shacter, and S. A. Weitzman, “Chronic inflammation and cancer: the role of the mitochondria,” Oncology, vol. 25, no. 5, pp. 400–413, 2011. View at Scopus
  15. L. M. Coussens and Z. Werb, “Inflammation and cancer,” Nature, vol. 420, no. 6917, pp. 860–867, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. D. B. Vendramini-Costa and J. E. Carvalho, “Molecular link mechanisms between inflammation and cancer,” Current Pharmaceutical Design, vol. 18, no. 26, pp. 3831–3852, 2012.
  17. H. Kuper, H. O. Adami, and D. Trichopoulos, “Infections as a major preventable cause of human cancer,” Journal of Internal Medicine, vol. 248, no. 3, pp. 171–183, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-related inflammation,” Nature, vol. 454, no. 7203, pp. 436–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Galon, A. Costes, F. Sanchez-Cabo et al., “Type, density, and location of immune cells within human colorectal tumors predict clinical outcome,” Science, vol. 313, no. 5795, pp. 1960–1964, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. C. H. Koehne and R. N. Dubois, “COX-2 inhibition and colorectal cancer,” Seminars in Oncology, vol. 31, no. 7, pp. 12–21, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. F. M. Shebl, L. C. Sakoda, A. Black, J. Koshiol, R. Grubb, T. R. Church, et al., “Aspirin but not ibuprofen use is associated with reduced risk of prostate cancer: a PLCO study,” British Journal of Cancer, vol. 107, no. 1, pp. 207–214, 2012.
  22. A. J. Walker, M. J. Grainge, and T. R. Card, “Aspirin and other non-steroidal anti-inflammatory drug use and colorectal cancer survival: a cohort study,” British Journal of Cancer, vol. 107, no. 9, pp. 1602–1607, 2012.
  23. H. H. Lee, Y. T. Tsan, W. C. Ho, M. H. Lin, C. H. Lee, C. D. Tseng, et al., “Angiotensin-converting enzyme inhibitors enhance the effect of cyclooxygenase inhibitors on breast cancer: a nationwide case-control study,” Journal of Hypertension, vol. 30, no. 12, pp. 2432–2439, 2012.
  24. M. E. Ramos-Nino, C. D. MacLean, and B. Littenberg, “Association of angiotensin-converting enzyme inhibitor therapy and comorbidity in diabetes: results from the Vermont diabetes information system,” BMC Endocrine Disorders, vol. 8, article 17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. C. E. Holmes, M. E. Ramos-Nino, and B. Littenberg, “An association between anti-platelet drug use and reduced cancer prevalence in diabetic patients: results from the Vermont Diabetes Information System Study,” BMC Cancer, vol. 10, article 289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Radoi, S. Paget-Bailly, D. Cyr, A. Papadopoulos, F. Guida, A. Schmaus, et al., “Tobacco smoking, alcohol drinking and risk of oral cavity cancer by subsite: results of a French population-based case-control study, the ICARE study,” European Journal of Cancer Prevention, vol. 22, no. 3, pp. 268–276, 2013. View at Publisher · View at Google Scholar
  27. L. Radoi and D. Luce, “A review of risk factors for oral cavity cancer: the importance of a standardized case definition,” Community Dentistry and Oral Epidemiology, vol. 41, no. 2, pp. 97–109, 2013. View at Publisher · View at Google Scholar
  28. S. S. Hecht, “Lung carcinogenesis by tobacco smoke,” International Journal of Cancer, vol. 131, no. 12, pp. 2724–2732, 2012.
  29. P. Grewal and V. A. Viswanathen, “Liver cancer and alcohol,” Clinical Liver Disease, vol. 16, no. 4, pp. 839–850, 2012.
  30. B. J. Vennervald and K. Polman, “Helminths and malignancy,” Parasite Immunology, vol. 31, no. 11, pp. 686–696, 2009.
  31. G. Khan, “Epstein-Barr virus, cytokines, and inflammation: a cocktail for the pathogenesis of Hodgkin's lymphoma?” Experimental Hematology, vol. 34, no. 4, pp. 399–406, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Lamb and L. F. Chen, “Role of the Helicobacter pylori-induced inflammatory response in the development of gastric cancer,” Journal of Cellular Biochemistry, vol. 114, no. 3, pp. 491–497, 2013. View at Publisher · View at Google Scholar
  33. F. Liotti, C. Visciano, and R. M. Melillo, “Inflammation in thyroid oncogenesis,” American Journal of Cancer Research, vol. 2, no. 3, pp. 286–297, 2012.
  34. A. Nicholson and J. Jankowski, “Acid reflux and oesophageal cancer,” Recent Results in Cancer Research, vol. 185, pp. 65–82, 2011.
  35. K. S. Sfanos and A. M. De Marzo, “Prostate cancer and inflammation: the evidence,” Histopathology, vol. 60, no. 1, pp. 199–215, 2012.
  36. S. Ghosh and K. Ashcraft, “An IL-6 link between obesity and cancer,” Frontiers in Bioscience, vol. 5, pp. 461–478, 2013.
  37. E. L. Heinrich, T. C. Walser, K. Krysan et al., “The inflammatory tumor microenvironment, epithelial mesenchymal transition and lung carcinogenesis,” Cancer Microenviron, vol. 5, no. 1, pp. 5–18, 2012.
  38. K. E. Wellen and G. S. Hotamisligil, “Inflammation, stress, and diabetes,” Journal of Clinical Investigation, vol. 115, no. 5, pp. 1111–1119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. M. I. Goran and T. L. Alderete, “Targeting adipose tissue inflammation to treat the underlying basis of the metabolic complications of obesity,” Nestlé Nutrition Institute Workshop Series, vol. 73, pp. 49–66, 2012.
  40. S. D. Hursting and S. M. Dunlap, “Obesity, metabolic dysregulation, and cancer: a growing concern and an inflammatory (and microenvironmental) issue,” Annals of the New York Academy of Sciences, vol. 1271, pp. 82–87, 2012.
  41. R. B. Ervin, “Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003–2006,” National Health Statistics Reports, no. 13, pp. 1–7, 2009. View at Scopus
  42. A. E. Harvey, L. M. Lashinger, and S. D. Hursting, “The growing challenge of obesity and cancer: an inflammatory issue,” Annals of the New York Academy of Sciences, vol. 1229, no. 1, pp. 45–52, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Halberg, I. Wernstedt-Asterholm, and P. E. Scherer, “The adipocyte as an endocrine cell,” Endocrinology and Metabolism Clinics of North America, vol. 37, no. 3, pp. 753–768, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Gesta, Y. H. Tseng, and C. R. Kahn, “Developmental origin of fat: tracking obesity to its source,” Cell, vol. 131, no. 2, pp. 242–256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. S. E. Wozniak, L. L. Gee, M. S. Wachtel, and E. E. Frezza, “Adipose tissue: the new endocrine organ? a review article,” Digestive Diseases and Sciences, vol. 54, no. 9, pp. 1847–1856, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. C. E. Juge-Aubry, E. Henrichot, and C. A. Meier, “Adipose tissue: a regulator of inflammation,” Best Practice and Research, vol. 19, no. 4, pp. 547–566, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. S. A. Porter, J. M. Massaro, U. Hoffmann, R. S. Vasan, C. J. O'Donnel, and C. S. Fox, “Abdominal subcutaneous adipose tissue: a protective fat depot?” Diabetes Care, vol. 32, no. 6, pp. 1068–1075, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Fruhbeck, J. Gómez-Ambrosi, F. J. Muruzábal, and M. A. Burrell, “The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation,” American Journal of Physiology, vol. 280, no. 6, pp. E827–E847, 2001.
  49. A. Dicker, K. Le Blanc, G. Åström et al., “Functional studies of mesenchymal stem cells derived from adult human adipose tissue,” Experimental Cell Research, vol. 308, no. 2, pp. 283–290, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. J. T. Crossno, S. M. Majka, T. Grazia, R. G. Gill, and D. J. Klemm, “Rosiglitazone promotes development of a novel adipocyte population from bone marrow-derived circulating progenitor cells,” Journal of Clinical Investigation, vol. 116, no. 12, pp. 3220–3228, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. G. J. Hausman and D. B. Hausman, “Search for the preadipocyte progenitor cell,” Journal of Clinical Investigation, vol. 116, no. 12, pp. 3103–3106, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Jaworski, E. Sarkadi-Nagy, R. E. Duncan, M. Ahmadian, and H. S. Sul, “Regulation of Triglyceride Metabolism. IV. Hormonal regulation of lipolysis in adipose tissue,” American Journal of Physiology, vol. 293, no. 1, pp. G1–G4, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. A. S. Greenberg, J. J. Egan, S. A. Wek, N. B. Garty, E. J. Blanchette-Mackie, and C. Londos, “Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets,” Journal of Biological Chemistry, vol. 266, no. 17, pp. 11341–11346, 1991. View at Scopus
  54. R. A. Weisiger, “Cytosolic fatty acid binding proteins catalyze two distinct steps in intracellular transport of their ligands,” Molecular and Cellular Biochemistry, vol. 239, no. 1-2, pp. 35–43, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. R. A. Weisiger and S. D. Zucker, “Transfer of fatty acids between intracellular membranes: roles of soluble binding proteins, distance, and time,” American Journal of Physiology, vol. 282, no. 1, pp. G105–G115, 2002. View at Scopus
  56. N. S. Tan, N. S. Shaw, N. Vinckenbosch et al., “Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription,” Molecular and Cellular Biology, vol. 22, no. 14, pp. 5114–5127, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. V. Ceperuelo-Mallafré, M. Miranda, M. R. Chacón et al., “Adipose tissue expression of the glycerol channel aquaporin-7 gene is altered in severe obesity but not in type 2 diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 9, pp. 3640–3645, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. A. H. Ali, C. Koutsari, M. Mundi, M. D. Stegall, J. K. Heimbach, S. J. Taler, et al., “Free fatty acid storage in human visceral and subcutaneous adipose tissue: role of adipocyte proteins,” Diabetes, vol. 60, no. 9, pp. 2300–2307, 2011.
  59. L. A. Tartaglia, M. Dembski, X. Weng et al., “Identification and expression cloning of a leptin receptor, OB-R,” Cell, vol. 83, no. 7, pp. 1263–1271, 1995. View at Publisher · View at Google Scholar · View at Scopus
  60. J. D. Mcgarry, “Does leptin lighten the problem of obesity?” Current Biology, vol. 5, no. 12, pp. 1342–1344, 1995. View at Scopus
  61. R. C. Frederich, A. Hamann, S. Anderson, B. Lollmann, B. B. Lowell, and J. S. Flier, “Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action,” Nature Medicine, vol. 1, no. 12, pp. 1311–1314, 1995. View at Scopus
  62. M. Mapfei, J. Halaas, E. Ravussin et al., “Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects,” Nature Medicine, vol. 1, no. 11, pp. 1155–1161, 1995. View at Scopus
  63. O. A. Macdougald, C. S. Hwang, H. Fan, and M. D. Lane, “Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 20, pp. 9034–9037, 1995. View at Publisher · View at Google Scholar · View at Scopus
  64. V. Koivisto, “Reducing weight with leptin,” Duodecim, vol. 111, no. 18, pp. 1731–1733, 1995. View at Scopus
  65. D. W. Haslam and W. P. T. James, “Obesity,” The Lancet, vol. 366, no. 9492, pp. 1197–1209, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Zeyda and T. M. Stulnig, “Adipose tissue macrophages,” Immunology Letters, vol. 112, no. 2, pp. 61–67, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Zeyda, D. Farmer, J. Todoric et al., “Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production,” International Journal of Obesity, vol. 31, no. 9, pp. 1420–1428, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Gordon, “Macrophage heterogeneity and tissue lipids,” Journal of Clinical Investigation, vol. 117, no. 1, pp. 89–93, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. D. E. Moller and J. P. Berger, “Role of PPARs in the regulation of obesity-related insulin sensitivity and inflammation,” International Journal of Obesity, vol. 27, no. 3, pp. S17–S21, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. S. B. Joseph, A. Castrillo, B. A. Laffitte, D. J. Mangelsdorf, and P. Tontonoz, “Reciprocal regulation of inflammation and lipid metabolism by liver X receptors,” Nature Medicine, vol. 9, no. 2, pp. 213–219, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. C. Caruso, C. R. Balistreri, and G. Candore, “The role of adipose tissue and adipokines in obesity-related inflammatory diseases,” Mediators of Inflammation, vol. 2010, Article ID 802078, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. C. N. Lumeng, J. B. Delproposto, D. J. Westcott, and A. R. Saltiel, “Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes,” Diabetes, vol. 57, no. 12, pp. 3239–3246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. V. Bourlier, A. Zakaroff-Girard, A. Miranville et al., “Remodeling phenotype of human subcutaneous adipose tissue macrophages,” Circulation, vol. 117, no. 6, pp. 806–815, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. V. Subramanian and A. W. Ferrante, “Obesity, inflammation, and macrophages,” Nestle Nutrition Workshop Series, vol. 63, pp. 151–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Chudek and A. Wiçcek, “Adipose tissue, inflammation and endothelial dysfunction,” Pharmacological Reports, vol. 58, pp. 81–88, 2006. View at Scopus
  76. C. Sengenès, A. Miranville, K. Lolmède, C. A. Curat, and A. Bouloumié, “The role of endothelial cells in inflamed adipose tissue,” Journal of Internal Medicine, vol. 262, no. 4, pp. 415–421, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Hummasti and G. S. Hotamisligil, “Endoplasmic reticulum stress and inflammation in obesity and diabetes,” Circulation Research, vol. 107, no. 5, pp. 579–591, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Lafontan and M. Berlan, “Do regional differences in adipocyte biology provide new pathophysiological insights?” Trends in Pharmacological Sciences, vol. 24, no. 6, pp. 276–283, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. K. L. Spalding, E. Arner, P. O. Westermark et al., “Dynamics of fat cell turnover in humans,” Nature, vol. 453, no. 7196, pp. 783–787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. T. Skurk, C. Alberti-Huber, C. Herder, and H. Hauner, “Relationship between adipocyte size and adipokine expression and secretion,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 3, pp. 1023–1033, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Jernås, J. Palming, K. Sjöholm et al., “Separation of human adipocytes by size: hypertrophic fat cells display distinct gene expression,” The FASEB Journal, vol. 20, no. 9, pp. 1540–1542, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. R. H. Unger, “Lipotoxic diseases,” Annual Review of Medicine, vol. 53, pp. 319–336, 2002.
  83. S. Taleb, R. Cancello, K. Clément, and D. Lacasa, “Cathepsin S promotes human preadipocyte differentiation: possible involvement of fibronectin degradation,” Endocrinology, vol. 147, no. 10, pp. 4950–4959, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. Xiao, H. Junfeng, L. Tianhong, W. Lu, C. Shulin, Z. Yu, et al., “Cathepsin K in adipocyte differentiation and its potential role in the pathogenesis of obesity,” The Journal of Clinical Endocrinology & Metabolism, vol. 91, no. 11, pp. 4520–4527, 2006.
  85. J. G. Neels, T. Thinnes, and D. J. Loskutoff, “Angiogenesis in an in vivo model of adipose tissue development,” FASEB Journal, vol. 18, no. 9, pp. 983–985, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Nishimura, I. Manabe, M. Nagasaki et al., “Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels,” Diabetes, vol. 56, no. 6, pp. 1517–1526, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. E. Bråkenhielm, R. Cao, B. Gao et al., “Angiogenesis inhibitor, TNP-470, prevents diet induced and genetic obesity in mice,” Circulation Research, vol. 94, no. 12, pp. 1579–1588, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. M. G. Kolonin, P. K. Saha, L. Chan, R. Pasqualini, and W. Arap, “Reversal of obesity by targeted ablation of adipose tissue,” Nature Medicine, vol. 10, no. 6, pp. 625–632, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. M. A. Rupnick, D. Panigrahy, C. Y. Zhang et al., “Adipose tissue mass can be regulated through the vasculature,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 16, pp. 10730–10735, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. N. Hosogai, A. Fukuhara, K. Oshima, Y. Miyata, S. Tanaka, K. Segawa, et al., “Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation,” Diabetes, vol. 56, no. 4, pp. 901–911, 2007.
  91. J. Ye, Z. Gao, J. Yin, and Q. He, “Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice,” American Journal of Physiology, vol. 293, no. 4, pp. E1118–E1128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. M. E. Rausch, S. Weisberg, P. Vardhana, and D. V. Tortoriello, “Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration,” International Journal of Obesity, vol. 32, no. 3, pp. 451–463, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. P. Wang, E. Mariman, J. Keijer et al., “Profiling of the secreted proteins during 3T3-L1 adipocyte differentiation leads to the identification of novel adipokines,” Cellular and Molecular Life Sciences, vol. 61, no. 18, pp. 2405–2417, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. J. V. Silha, M. Krsek, P. Sucharda, and L. J. Murphy, “Angiogenic factors are elevated in overweight and obese individuals,” International Journal of Obesity, vol. 29, no. 11, pp. 1308–1314, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. C. H. Cho, Y. J. Koh, J. Han et al., “Angiogenic role of LYVE-1-positive macrophages in adipose tissue,” Circulation Research, vol. 100, no. 4, pp. e47–e57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. C. N. Lumeng, J. L. Bodzin, and A. R. Saltiel, “Obesity induces a phenotypic switch in adipose tissue macrophage polarization,” Journal of Clinical Investigation, vol. 117, no. 1, pp. 175–184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. P. Trayhurn and I. S. Wood, “Adipokines: inflammation and the pleiotropic role of white adipose tissue,” British Journal of Nutrition, vol. 92, no. 3, pp. 347–355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. J. Yin, Z. Gao, Q. He, D. Zhou, Z. Guo, and J. Ye, “Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue,” American Journal of Physiology, vol. 296, no. 2, pp. E333–E342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. B. Wang, I. S. Wood, and P. Trayhurn, “Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes,” Pflugers Archiv European Journal of Physiology, vol. 455, no. 3, pp. 479–492, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. J. Ye, “Emerging role of adipose tissue hypoxia in obesity and insulin resistance,” International Journal of Obesity, vol. 33, no. 1, pp. 54–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. J. Tang, H. Yan, and S. Zhuang, “Inflammation and oxidative stress in obesity-related glomerulopathy,” International Journal of Nephrology, vol. 2012, Article ID 608397, 11 pages, 2012. View at Publisher · View at Google Scholar
  102. S. Furukawa, T. Fujita, M. Shimabukuro et al., “Increased oxidative stress in obesity and its impact on metabolic syndrome,” Journal of Clinical Investigation, vol. 114, no. 12, pp. 1752–1761, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. J. F. Keaney, Jr, M. G. Larson et al., et al., “Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 3, pp. 434–439, 2003.
  104. H. K. Vincent and A. G. Taylor, “Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans,” International Journal of Obesity, vol. 30, no. 3, pp. 400–418, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. E. Pihl, K. Zilmer, T. Kullisaar, C. Kairane, A. Mägi, and M. Zilmer, “Atherogenic inflammatory and oxidative stress markers in relation to overweight values in male former athletes,” International Journal of Obesity, vol. 30, no. 1, pp. 141–146, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. S. J. Piva, M. M. M. F. Duarte, I. B. M. Da Cruz et al., “Ischemia-modified albumin as an oxidative stress biomarker in obesity,” Clinical Biochemistry, vol. 44, no. 4, pp. 345–347, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. N. Gletsu-Miller, J. M. Hansen, D. P. Jones et al., “Loss of total and visceral adipose tissue mass predicts decreases in oxidative stress after weight-loss surgery,” Obesity, vol. 17, no. 3, pp. 439–446, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. C. Chrysohoou, D. B. Panagiotakos, C. Pitsavos et al., “The implication of obesity on total antioxidant capacity in apparently healthy men and women: the ATTICA study,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 17, no. 8, pp. 590–597, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. J. Hartwich, J. Góralska, D. Siedlecka, A. Gruca, M. Trzos, and A. Dembinska-Kiec, “Effect of supplementation with vitamin E and C on plasma hsCRP level and cobalt-albumin binding score as markers of plasma oxidative stress in obesity,” Genes and Nutrition, vol. 2, no. 1, pp. 151–154, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. R. Cancello and K. Clément, “Is obesity an inflammatory illness? Role of low-grade inflammation and macrophage infiltration in human white adipose tissue,” BJOG: An International Journal of Obstetrics and Gynaecology, vol. 113, no. 10, pp. 1141–1147, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. F. Lago, C. Dieguez, J. Gómez-Reino, and O. Gualillo, “Adipokines as emerging mediators of immune response and inflammation,” Nature Clinical Practice Rheumatology, vol. 3, no. 12, pp. 716–724, 2007.
  112. M. H. Fonseca-Alaniz, J. Takada, M. I. Alonso-Vale, and F. B. Lima, “Adipose tissue as an endocrine organ: from theory to practice,” Jornal de Pediatria, vol. 83, no. 5, pp. S192–203, 2007. View at Scopus
  113. A. Fernandez-Sanchez, E. Madrigal-Santillán, M. Bautista, J. Esquivel-Soto, Á. Morales-González, C. Esquivel-Chirino, et al., “Inflammation, oxidative stress, and obesity,” International Journal of Molecular Sciences, vol. 12, no. 5, pp. 3117–3132, 2011.
  114. J. D. Morrow, “Is oxidant stress a connection between obesity and atherosclerosis?” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 3, pp. 368–370, 2003.
  115. S. De Ferranti and D. Mozaffarian, “The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences,” Clinical Chemistry, vol. 54, no. 6, pp. 945–955, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. C. Yu, Y. Chen, G. W. Cline et al., “Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle,” Journal of Biological Chemistry, vol. 277, no. 52, pp. 50230–50236, 2002. View at Publisher · View at Google Scholar · View at Scopus
  117. N. I. Khan, L. Naz, and G. Yasmeen, “Obesity: an independent risk factor for systemic oxidative stress,” Pakistan Journal of Pharmaceutical Sciences, vol. 19, no. 1, pp. 62–65, 2006. View at Scopus
  118. X. Shi, A. Burkart, S. M. Nicoloro, M. P. Czech, J. Straubhaar, and S. Corvera, “Paradoxical effect of mitochondrial respiratory chain impairment on insulin signaling and glucose transport in adipose cells,” Journal of Biological Chemistry, vol. 283, no. 45, pp. 30658–30667, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. C. Jiang, A. T. Ting, and B. Seed, “PPAR-γ agonists inhibit production of monocyte inflammatory cytokines,” Nature, vol. 391, no. 6662, pp. 82–86, 1998. View at Publisher · View at Google Scholar · View at Scopus
  120. J. B. Seo, H. M. Moon, W. S. Kim et al., “Activated liver X receptors stimulate adipocyte differentiation through induction of peroxisome proliferator-activated receptor γ expression,” Molecular and Cellular Biology, vol. 24, no. 8, pp. 3430–3444, 2004. View at Publisher · View at Google Scholar · View at Scopus
  121. C. K. Glass and J. M. Olefsky, “Inflammation and lipid signaling in the etiology of insulin resistance,” Cell Metabolism, vol. 15, no. 5, pp. 635–645, 2012.
  122. C. B. Clish, J. A. O'Brien, K. Gronert, G. L. Stahl, N. A. Petasis, and C. N. Serhan, “Local and systemic delivery of a stable aspirin-triggered lipoxin prevents neutrophil recruitment in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 14, pp. 8247–8252, 1999. View at Publisher · View at Google Scholar · View at Scopus
  123. A. González-Périz, R. Horrillo, N. Ferré et al., “Obesity-induced insulin resistance and hepatic steatosis are alleviated by ω-3 fatty acids: a role for resolvins and protectins,” FASEB Journal, vol. 23, no. 6, pp. 1946–1957, 2009. View at Publisher · View at Google Scholar · View at Scopus
  124. C. Godson and H. R. Brady, “Lipoxins: novel anti-inflammatory therapeutics?” Current Opinion in Investigational Drugs, vol. 1, no. 3, pp. 380–385, 2000. View at Scopus
  125. M. J. Gething and J. Sambrook, “Protein folding in the cell,” Nature, vol. 355, no. 6355, pp. 33–45, 1992. View at Publisher · View at Google Scholar · View at Scopus
  126. U. Özcan, Q. Cao, E. Yilmaz et al., “Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes,” Science, vol. 306, no. 5695, pp. 457–461, 2004. View at Publisher · View at Google Scholar · View at Scopus
  127. Y. Nakatani, H. Kaneto, D. Kawamori et al., “Involvement of endoplasmic reticulum stress in insulin resistance and diabetes,” Journal of Biological Chemistry, vol. 280, no. 1, pp. 847–851, 2005. View at Publisher · View at Google Scholar · View at Scopus
  128. M. F. Gregor and G. S. Hotamisligil, “Adipocyte stress: the endoplasmic reticulum and metabolic disease,” Journal of Lipid Research, vol. 48, no. 9, pp. 1905–1914, 2007. View at Publisher · View at Google Scholar · View at Scopus
  129. G. S. Hotamisligil, “Endoplasmic reticulum stress and the inflammatory basis of metabolic disease,” Cell, vol. 140, no. 6, pp. 900–917, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. H. P. Harding, Y. Zhang, A. Bertolotti, H. Zeng, and D. Ron, “Perk is essential for translational regulation and cell survival during the unfolded protein response,” Molecular Cell, vol. 5, no. 5, pp. 897–904, 2000. View at Publisher · View at Google Scholar · View at Scopus
  131. Y. Ma, J. W. Brewer, J. Alan Diehl, and L. M. Hendershot, “Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response,” Journal of Molecular Biology, vol. 318, no. 5, pp. 1351–1365, 2002. View at Publisher · View at Google Scholar · View at Scopus
  132. C. Sidrauski and P. Walter, “The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response,” Cell, vol. 90, no. 6, pp. 1031–1039, 1997. View at Publisher · View at Google Scholar · View at Scopus
  133. J. Shen, X. Chen, L. Hendershot, and R. Prywes, “ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of golgi localization signals,” Developmental Cell, vol. 3, no. 1, pp. 99–111, 2002. View at Publisher · View at Google Scholar · View at Scopus
  134. N. Kawasaki, R. Asada, A. Saito, S. Kanemoto, and K. Imaizumi, “Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue,” Scientific Reports, vol. 2, article 799, 2012.
  135. M. Cnop, F. Foufelle, and L. A. Velloso, “Endoplasmic reticulum stress, obesity and diabetes,” Trends in Molecular Medicine, vol. 18, no. 1, pp. 59–68, 2012.
  136. P. Jiao, J. Ma, B. Feng et al., “FFA-induced adipocyte inflammation and insulin resistance: involvement of ER stress and IKKβ pathways,” Obesity, vol. 19, no. 3, pp. 483–491, 2011. View at Publisher · View at Google Scholar · View at Scopus
  137. P. Hu, Z. Han, A. D. Couvillon, R. J. Kaufman, and J. H. Exton, “Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-regulation of TRAF2 expression,” Molecular and Cellular Biology, vol. 26, no. 8, pp. 3071–3084, 2006. View at Publisher · View at Google Scholar · View at Scopus
  138. P. S. Gargalovic, N. M. Gharavi, M. J. Clark, J. Pagnon, W. P. Yang, A. He, et al., “The unfolded protein response is an important regulator of inflammatory genes in endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 11, pp. 2490–2496, 2006.
  139. S. Braun, K. Bitton-Worms, and D. LeRoith, “The link between the metabolic syndrome and cancer,” International Journal of Biological Sciences, vol. 7, no. 7, pp. 1003–1015, 2011.
  140. M. H. Faulds and K. Dahlman-Wright, “Metabolic diseases and cancer risk,” Current Opinion in Oncology, vol. 24, no. 1, pp. 58–61, 2012.
  141. I. Vucenik and J. P. Stains, “Obesity and cancer risk: evidence, mechanisms, and recommendations,” Annals of the New York Academy of Sciences, vol. 1271, pp. 37–43, 2012.
  142. O. Kaidar-Person, G. Bar-Sela, and B. Person, “The two major epidemics of the twenty-first century: obesity and cancer,” Obesity Surgery, vol. 21, no. 11, pp. 1792–1797, 2011.
  143. N. Parekh, U. Chandran, and E. V. Bandera, “Obesity in cancer survival,” Annual Review of Nutrition, vol. 32, pp. 311–342, 2012.
  144. E. E. Calle, C. Rodriguez, K. Walker-Thurmond, and M. J. Thun, “Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. Adults,” The New England Journal of Medicine, vol. 348, no. 17, pp. 1625–1638, 2003. View at Publisher · View at Google Scholar · View at Scopus
  145. E. E. Calle and M. J. Thun, “Obesity and cancer,” Oncogene, vol. 23, no. 38, pp. 6365–6378, 2004. View at Publisher · View at Google Scholar · View at Scopus
  146. E. E. Calle and R. Kaaks, “Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms,” Nature Reviews Cancer, vol. 4, no. 8, pp. 579–591, 2004. View at Scopus
  147. A. G. Renehan, M. Tyson, M. Egger, R. F. Heller, and M. Zwahlen, “Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies,” The Lancet, vol. 371, no. 9612, pp. 569–578, 2008. View at Publisher · View at Google Scholar · View at Scopus
  148. A. G. Renehan, “Bariatric surgery, weight reduction, and cancer prevention,” The Lancet Oncology, vol. 10, no. 7, pp. 640–641, 2009. View at Publisher · View at Google Scholar · View at Scopus
  149. L. Sjöström, A. Gummesson, C. D. Sjöström et al., “Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial,” The Lancet Oncology, vol. 10, no. 7, pp. 653–662, 2009. View at Publisher · View at Google Scholar · View at Scopus
  150. D. L. Roberts, C. Dive, and A. G. Renehan, “Biological mechanisms linking obesity and cancer risk: new perspectives,” Annual Review of Medicine, vol. 61, pp. 301–316, 2010. View at Publisher · View at Google Scholar · View at Scopus
  151. E. A. Rondini, A. E. Harvey, J. P. Steibel, S. D. Hursting, and J. I. Fenton, “Energy balance modulates colon tumor growth: interactive roles of insulin and estrogen,” Molecular Carcinogenesis, vol. 50, no. 5, pp. 370–382, 2011. View at Publisher · View at Google Scholar · View at Scopus
  152. S. D. Hursting and N. A. Berger, “Energy balance, host-related factors, and cancer progression,” Journal of Clinical Oncology, vol. 28, no. 26, pp. 4058–4065, 2010. View at Publisher · View at Google Scholar · View at Scopus
  153. S. Margetic, C. Gazzola, G. G. Pegg, and R. A. Hill, “Leptin: a review of its peripheral actions and interactions,” International Journal of Obesity and Related Metabolic Disorders, vol. 26, no. 11, pp. 1407–1433, 2002.
  154. J. Park and P. E. Scherer, “Leptin and cancer: from cancer stem cells to metastasis,” Endocrine-Related Cancer, vol. 18, no. 4, pp. C25–C29, 2011.
  155. J. M. Friedman, “Leptin at 14 y of age: an ongoing story,” American Journal of Clinical Nutrition, vol. 89, no. 3, 2009. View at Publisher · View at Google Scholar · View at Scopus
  156. M. Maffei, H. Fei, G. H. Lee et al., “Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 15, pp. 6957–6960, 1995. View at Publisher · View at Google Scholar · View at Scopus
  157. C. Garofalo and E. Surmacz, “Leptin and cancer,” Journal of Cellular Physiology, vol. 207, no. 1, pp. 12–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  158. S. C. Benoit, D. J. Clegg, R. J. Seeley, and S. C. Woods, “Insulin and leptin as adiposity signals,” Recent Progress in Hormone Research, vol. 59, pp. 267–285, 2004.
  159. L. Gautron and J. K. Elmquist, “Sixteen years and counting: an update on leptin in energy balance,” Journal of Clinical Investigation, vol. 121, no. 6, pp. 2087–2093, 2011. View at Publisher · View at Google Scholar · View at Scopus
  160. J. E. Drew, “Molecular mechanisms linking adipokines to obesity-related colon cancer: focus on leptin,” Proceedings of the Nutrition Society, vol. 71, no. 1, pp. 175–180, 2012.
  161. Q. Zheng, S. M. Dunlap, J. Zhu, E. Downs-Kelly, J. Rich, S. D. Hursting, et al., “Leptin deficiency suppresses MMTV-Wnt-1 mammary tumor growth in obese mice and abrogates tumor initiating cell survival,” Endocrine-Related Cancer, vol. 18, no. 4, pp. 491–503, 2011.
  162. E. C. Villanueva and M. G. Myers, “Leptin receptor signaling and the regulation of mammalian physiology,” International Journal of Obesity, vol. 32, no. 7, pp. S8–S12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  163. J. Chen, “Multiple signal pathways in obesity-associated cancer,” Obesity Reviews, vol. 12, no. 12, pp. 1063–1070, 2011.
  164. J. Gao, J. Tian, Y. Lv et al., “Leptin induces functional activation of cyclooxygenase-2 through JAK2/ STAT3, MAPK/ERK, and PI3K/AKT pathways in human endometrial cancer cells,” Cancer Science, vol. 100, no. 3, pp. 389–395, 2009. View at Publisher · View at Google Scholar · View at Scopus
  165. T. Jaffe and B. Schwartz, “Leptin promotes motility and invasiveness in human colon cancer cells by activating multiple signal-transduction pathways,” International Journal of Cancer, vol. 123, no. 11, pp. 2543–2556, 2008. View at Publisher · View at Google Scholar · View at Scopus
  166. D. L. Morris and L. Rui, “Recent advances in understanding leptin signaling and leptin resistance,” American Journal of Physiology, vol. 297, no. 6, pp. E1247–E1259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  167. M. Ishikawa, J. Kitayama, and H. Nagawa, “Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer,” Clinical Cancer Research, vol. 10, no. 13, pp. 4325–4331, 2004. View at Publisher · View at Google Scholar · View at Scopus
  168. C. Garofalo, M. Koda, S. Cascio et al., “Increased expression of leptin and the leptin receptor as a marker of breast cancer progression: possible role of obesity-related stimuli,” Clinical Cancer Research, vol. 12, no. 5, pp. 1447–1453, 2006. View at Publisher · View at Google Scholar · View at Scopus
  169. J. M. Howard, P. Beddy, D. Ennis, M. Keogan, G. P. Pidgeon, and J. V. Reynolds, “Associations between leptin and adiponectin receptor upregulation, visceral obesity and tumour stage in oesophageal and junctional adenocarcinoma,” British Journal of Surgery, vol. 97, no. 7, pp. 1020–1027, 2010. View at Publisher · View at Google Scholar · View at Scopus
  170. J. M. Howard, G. P. Pidgeon, and J. V. Reynolds, “Leptin and gastro-intestinal malignancies,” Obesity Reviews, vol. 11, no. 12, pp. 863–874, 2010. View at Publisher · View at Google Scholar · View at Scopus
  171. L. Vona-Davis and D. P. Rose, “Adipokines as endocrine, paracrine, and autocrine factors in breast cancer risk and progression,” Endocrine-Related Cancer, vol. 14, no. 2, pp. 189–206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  172. G. A. Bray, “The underlying basis for obesity: relationship to cancer,” Journal of Nutrition, vol. 132, no. 11 Supplement, pp. 3451S–3455S, 2002.
  173. D. P. Rose, D. Komninou, and G. D. Stephenson, “Obesity, adipocytokines, and insulin resistance in breast cancer,” Obesity Reviews, vol. 5, no. 3, pp. 153–165, 2004. View at Publisher · View at Google Scholar · View at Scopus
  174. A. Stofkova, “Leptin and adiponectin: from energy and metabolic dysbalance to inflammation and autoimmunity,” Endocrine Regulations, vol. 43, no. 4, pp. 157–168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  175. P. E. Scherer, S. Williams, M. Fogliano, G. Baldini, and H. F. Lodish, “A novel serum protein similar to C1q, produced exclusively in adipocytes,” Journal of Biological Chemistry, vol. 270, no. 45, pp. 26746–26749, 1995. View at Publisher · View at Google Scholar · View at Scopus
  176. T. Yamauchi, J. Kamon, Y. Minokoshi et al., “Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase,” Nature Medicine, vol. 8, no. 11, pp. 1288–1295, 2002. View at Publisher · View at Google Scholar · View at Scopus
  177. I. Kelesidis, T. Kelesidis, and C. S. Mantzoros, “Adiponectin and cancer: a systematic review,” British Journal of Cancer, vol. 94, no. 9, pp. 1221–1225, 2006. View at Publisher · View at Google Scholar · View at Scopus
  178. D. Barb, C. J. Williams, A. K. Neuwirth, and C. S. Mantzoros, “Adiponectin in relation to malignancies: a review of existing basic research and clinical evidence,” The American Journal of Clinical Nutrition, vol. 86, no. 3, pp. s858–s866, 2007. View at Scopus
  179. U. B. Pajvani, M. Hawkins, T. P. Combs et al., “Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity,” Journal of Biological Chemistry, vol. 279, no. 13, pp. 12152–12162, 2004. View at Publisher · View at Google Scholar · View at Scopus
  180. A. Koerner, J. Kratzsch, and W. Kiess, “Adipocytokines: leptin—the classical, resistin—the controversical, adiponectin—the promising, and more to come,” Best Practice and Research, vol. 19, no. 4, pp. 525–546, 2005. View at Publisher · View at Google Scholar · View at Scopus
  181. O. Ukkola and M. Santaniemi, “Adiponectin: a link between excess adiposity and associated comorbidities?” Journal of Molecular Medicine, vol. 80, no. 11, pp. 696–702, 2002. View at Publisher · View at Google Scholar · View at Scopus
  182. A. Coppola, R. Marfella, L. Coppola et al., “Effect of weight loss on coronary circulation and adiponectin levels in obese women,” International Journal of Cardiology, vol. 134, no. 3, pp. 414–416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  183. T. Yamauchi, J. Kamon, H. Waki et al., “The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity,” Nature Medicine, vol. 7, no. 8, pp. 941–946, 2001. View at Publisher · View at Google Scholar · View at Scopus
  184. J. Bełtowski, “Adiponectin and resistin—new hormones of white adipose tissue,” Medical Science Monitor, vol. 9, no. 2, pp. RA55–RA61, 2003. View at Scopus
  185. M. Dalamaga, K. N. Diakopoulos, and C. S. Mantzoros, “The role of adiponectin in cancer: a review of current evidence,” Endocrine Reviews, vol. 33, no. 4, pp. 547–594, 2012.
  186. V. Izadi, E. Farabad, and L. Azadbakht, “Serum adiponectin level and different kinds of cancer: a review of recent evidence,” ISRN Oncology, vol. 2012, Article ID 982769, 2012. View at Publisher · View at Google Scholar
  187. A. M. Kucharska-Newton, W. D. Rosamond, P. J. Mink, A. J. Alberg, E. Shahar, and A. R. Folsom, “HDL-cholesterol and incidence of breast cancer in the ARIC Cohort Study,” Annals of Epidemiology, vol. 18, no. 9, pp. 671–677, 2008. View at Publisher · View at Google Scholar · View at Scopus
  188. A. S. Furberg, M. B. Veierød, T. Wilsgaard, L. Berstein, and I. Thune, “Serum high density lipoprotein cholesterol, metabolic profile, and breast cancer risk,” Journal of the National Cancer Institute, vol. 96, no. 15, pp. 1152–1160, 2004. View at Scopus
  189. A. S. Furberg, G. Jasienska, N. Bjurstam et al., “Metabolic and hormonal profiles: HDL cholesterol as a plausible biomarker of breast cancer risk. The Norwegian EBBA study,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 1, pp. 33–40, 2005. View at Scopus
  190. U. Lim, T. Gayles, H. A. Katki et al., “Serum high-density lipoprotein cholesterol and risk of non-hodgkin lymphoma,” Cancer Research, vol. 67, no. 11, pp. 5569–5574, 2007. View at Publisher · View at Google Scholar · View at Scopus
  191. L. Magura, R. Blanchard, B. Hope, J. R. Beal, G. G. Schwartz, and A. E. Sahmoun, “Hypercholesterolemia and prostate cancer: a hospital-based case-control study,” Cancer Causes and Control, vol. 19, no. 10, pp. 1259–1266, 2008. View at Publisher · View at Google Scholar · View at Scopus
  192. J. Manjer, G. Berglund, L. Bondesson et al., “Intra-urban differences in breast cancer mortality: a study from the city of Malmo in Sweden,” Journal of Epidemiology and Community Health, vol. 54, no. 4, pp. 279–285, 2000. View at Publisher · View at Google Scholar · View at Scopus
  193. V. G. Kaklamani, M. Sadim, A. Hsi et al., “Variants of the adiponectin and adiponectin receptor 1 genes and breast cancer risk,” Cancer Research, vol. 68, no. 9, pp. 3178–3184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  194. A. Korner, K. Pazaitou-Panayiotou, T. Kelesidis, I. Kelesidis, C. J. Williams, A. Kaprara, et al., “Total and high-molecular-weight adiponectin in breast cancer: in vitro and in vivo studies,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 3, pp. 1041–1048, 2007.
  195. C. Mantzoros, E. Petridou, N. Dessypris, C. Chavelas, M. Dalamaga, D. M. Alexe, et al., “Adiponectin and breast cancer risk,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 3, pp. 1102–1107, 2004.
  196. K. Michalakis, C. J. Williams, N. Mitsiades et al., “Serum adiponectin concentrations and tissue expression of adiponectin receptors are reduced in patients with prostate cancer: a case control study,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 2, pp. 308–313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  197. S. Otake, H. Takeda, S. Fujishima et al., “Decreased levels of plasma adiponectin associated with increased risk of colorectal cancer,” World Journal of Gastroenterology, vol. 16, no. 10, pp. 1252–1257, 2010. View at Publisher · View at Google Scholar · View at Scopus
  198. B. He, Y. Pan, Y. Zhang et al., “Effects of genetic variations in the Adiponectin pathway genes on the risk of colorectal cancer in the Chinese population,” BMC Medical Genetics, vol. 12, article 94, 2011. View at Publisher · View at Google Scholar · View at Scopus
  199. A. Yildirim, M. Bilici, K. Çayir, V. Yanmaz, S. Yildirim, and S. B. Tekin, “Serum adiponectin levels in patients with esophageal cancer,” Japanese Journal of Clinical Oncology, vol. 39, no. 2, pp. 92–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  200. R. Z. Stolzenberg-Solomon, S. Weinstein, M. Pollak et al., “Prediagnostic adiponectin concentrations and pancreatic cancer risk in male smokers,” American Journal of Epidemiology, vol. 168, no. 9, pp. 1047–1055, 2008. View at Publisher · View at Google Scholar · View at Scopus
  201. S. D. Hursting, L. M. Lashinger, K. W. Wheatley et al., “Reducing the weight of cancer: mechanistic targets for breaking the obesity-carcinogenesis link,” Best Practice & Research, vol. 22, no. 4, pp. 659–669, 2008.
  202. R. Kaaks, A. Lukanova, and M. S. Kurzer, “Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review,” Cancer Epidemiology Biomarkers and Prevention, vol. 11, no. 12, pp. 1531–1543, 2002. View at Scopus
  203. T. J. Key and V. G. Vogel, “Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women,” Breast Diseases, vol. 95, no. 16, pp. 1218–1226, 2003. View at Scopus
  204. R. Kaaks, S. Rinaldi, T. J. Key et al., “Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition,” Endocrine-Related Cancer, vol. 12, no. 4, pp. 1071–1082, 2005. View at Publisher · View at Google Scholar · View at Scopus
  205. C. A. Derby, S. Zilber, D. Brambilla, K. H. Morales, and J. B. McKinlay, “Body mass index, waist circumference and waist to hip ratio and change in sex steroid hormones: the Massachusetts Male Ageing Study,” Clinical Endocrinology, vol. 65, no. 1, pp. 125–131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  206. K. Nanda, L. A. Bastian, V. Hasselblad, and D. L. Simel, “Hormone replacement therapy and the risk of colorectal cancer: a meta- analysis,” Obstetrics and Gynecology, vol. 93, no. 5, pp. 880–888, 1999. View at Publisher · View at Google Scholar · View at Scopus
  207. H. D. Nelson, L. L. Humphrey, P. Nygren, S. M. Teutsch, and J. D. Allan, “Postmenopausal hormone replacement therapy: scientific review,” Journal of the American Medical Association, vol. 288, no. 7, pp. 872–881, 2002. View at Scopus
  208. M. L. Slattery, C. Sweeney, M. Murtaugh, K. N. Ma, R. K. Wolff, et al., “Associations between ERalpha, ERbeta, and AR genotypes and colon and rectal cancer,” Cancer Epidemiology, Biomarkers & Prevention, vol. 14, no. 12, pp. 2936–2942, 2005.
  209. R. H. Straub, “The complex role of estrogens in inflammation,” Endocrine Reviews, vol. 28, no. 5, pp. 521–574, 2007. View at Publisher · View at Google Scholar · View at Scopus
  210. X. P. Jiang, D. C. Yang, R. L. Elliott, and J. F. Head, “Reduction in serum IL-6 after vacination of breast cancer patients with tumour-associated antigens is related to estrogen receptor status,” Cytokine, vol. 12, no. 5, pp. 458–465, 2000. View at Publisher · View at Google Scholar · View at Scopus
  211. J. E. Morley and R. N. Baumgartner, “Cytokine-related aging process,” Journals of Gerontology Series A, vol. 59, no. 9, pp. M924–M929, 2004.
  212. W. J. Loh, B. V. North, D. G. Johnston, and I. F. Godsland, “Insulin resistance-related biomarker clustering and subclinical inflammation as predictors of cancer mortality during 21.5 years of follow-up,” Cancer Causes and Control, vol. 21, no. 5, pp. 709–718, 2010. View at Publisher · View at Google Scholar · View at Scopus
  213. B. B. Kahn and J. S. Flier, “Obesity and insulin resistance,” Journal of Clinical Investigation, vol. 106, no. 4, pp. 473–481, 2000. View at Scopus
  214. P. Pisani, “Hyper-insulinaemia and cancer, meta-analyses of epidemiological studies,” Archives of Physiology and Biochemistry, vol. 114, no. 1, pp. 63–70, 2008. View at Publisher · View at Google Scholar · View at Scopus
  215. I. M. Jazet, H. Pijl, and A. E. Meinders, “Adipose tissue as an endocrine organ: impact on insulin resistance,” Netherlands Journal of Medicine, vol. 61, no. 6, pp. 194–212, 2003. View at Scopus
  216. S. E. Kahn, R. L. Hull, and K. M. Utzschneider, “Mechanisms linking obesity to insulin resistance and type 2 diabetes,” Nature, vol. 444, no. 7121, pp. 840–846, 2006. View at Publisher · View at Google Scholar · View at Scopus
  217. S. E. Shoelson, J. Lee, and A. B. Goldfine, “Inflammation and insulin resistance,” Journal of Clinical Investigation, vol. 116, no. 7, pp. 1793–1801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  218. M. Gautam, T. M. DeChiara, D. J. Glass, G. D. Yancopoulos, and J. R. Sanes, “Distinct phenotypes of mutant mice lacking agrin, MuSK, or rapsyn,” Developmental Brain Research, vol. 114, no. 2, pp. 171–178, 1999. View at Publisher · View at Google Scholar · View at Scopus
  219. M. Pollak, “Insulin, insulin-like growth factors and neoplasia,” Best Practice and Research, vol. 22, no. 4, pp. 625–638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  220. J. Dupont and D. Le Roith, “Insulin-like growth factor 1 and oestradiol promote cell proliferation of MCF-7 breast cancer cells: new insights into their synergistic effects,” Journal of Clinical Pathology, vol. 54, no. 3, pp. 149–154, 2001. View at Publisher · View at Google Scholar · View at Scopus
  221. A. A. Samani, S. Yakar, D. LeRoith, and P. Brodt, “The role of the IGF system in cancer growth and metastasis: overview and recent insights,” Endocrine Reviews, vol. 28, no. 1, pp. 20–47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  222. R. Kooijman, “Regulation of apoptosis by insulin-like growth factor (IGF)-I,” Cytokine and Growth Factor Reviews, vol. 17, no. 4, pp. 305–323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  223. J. Frystyk, “Free insulin-like growth factors—measurements and relationships to growth hormone secretion and glucose homeostasis,” Growth Hormone and IGF Research, vol. 14, no. 5, pp. 337–375, 2004. View at Publisher · View at Google Scholar · View at Scopus
  224. S. D. Hursting, S. M. Smith, L. M. Lashinger, A. E. Harvey, and S. N. Perkins, “Calories and carcinogenesis: lessons learned from 30 years of calorie restriction research,” Carcinogenesis, vol. 31, no. 1, Article ID bgp280, pp. 83–89, 2009. View at Publisher · View at Google Scholar · View at Scopus
  225. A. G. Renehan, J. Frystyk, and A. Flyvbjerg, “Obesity and cancer risk: the role of the insulin-IGF axis,” Trends in Endocrinology and Metabolism, vol. 17, no. 8, pp. 328–336, 2006. View at Publisher · View at Google Scholar · View at Scopus
  226. R. Huxley, A. Ansary-Moghaddam, A. Berrington De González, F. Barzi, and M. Woodward, “Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies,” British Journal of Cancer, vol. 92, no. 11, pp. 2076–2083, 2005. View at Publisher · View at Google Scholar · View at Scopus
  227. P. Lindblad, W. H. Chow, J. Chan et al., “The role of diabetes mellitus in the aetiology of renal cell cancer,” Diabetologia, vol. 42, no. 1, pp. 107–112, 1999. View at Publisher · View at Google Scholar · View at Scopus
  228. E. Friberg, C. S. Mantzoros, and A. Wolk, “Diabetes and risk of endometrial cancer: a population-based prospective cohort study,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 2, pp. 276–280, 2007. View at Publisher · View at Google Scholar · View at Scopus
  229. R. Kaaks, “Nutrition, hormones, and breast cancer: is insulin the missing link?” Cancer Causes and Control, vol. 7, no. 6, pp. 605–625, 1996. View at Publisher · View at Google Scholar · View at Scopus
  230. A. G. Renehan, D. L. Roberts, and C. Dive, “Obesity and cancer: pathophysiological and biological mechanisms,” Archives of Physiology and Biochemistry, vol. 114, no. 1, pp. 71–83, 2008. View at Publisher · View at Google Scholar · View at Scopus
  231. A. Wolk, C. S. Mantzoros, S. O. Andersson et al., “Insulin-like growth factor 1 and prostate cancer risk: a population- based, case-control study,” Journal of the National Cancer Institute, vol. 90, no. 12, pp. 911–915, 1998. View at Scopus
  232. C. W. M. Cutting, C. Hunt, J. A. Nisbet, J. M. Bland, A. G. Dalgleish, and R. S. Kirby, “Serum insulin-like growth factor-1 is not a useful marker of prostate cancer,” BJU International, vol. 83, no. 9, pp. 996–999, 1999. View at Publisher · View at Google Scholar · View at Scopus
  233. S. E. Hankinson, W. C. Willett, G. A. Colditz et al., “Circulating concentrations of insulin-like growth factor-I and risk of breast cancer,” The Lancet, vol. 351, no. 9113, pp. 1393–1396, 1998. View at Publisher · View at Google Scholar · View at Scopus
  234. N. K. Saxena, L. Taliaferro-Smith, B. B. Knight et al., “Bidirectional crosstalk between leptin and insulin-like growth factor-I signaling promotes invasion and migration of breast cancer cells via transactivation of epidermal growth factor receptor,” Cancer Research, vol. 68, no. 23, pp. 9712–9722, 2008. View at Publisher · View at Google Scholar · View at Scopus
  235. J. Nakae, Y. Kido, and D. Accili, “Distinct and overlapping functions of insulin and IGF-I receptors,” Endocrine Reviews, vol. 22, no. 6, pp. 818–835, 2001. View at Publisher · View at Google Scholar · View at Scopus
  236. E. J. Gallagher and D. LeRoith, “The proliferating role of insulin and insulin-like growth factors in cancer,” Trends in Endocrinology and Metabolism, vol. 21, no. 10, pp. 610–618, 2010. View at Publisher · View at Google Scholar · View at Scopus
  237. L. W. Ellisen, “Growth control under stress: mTOR regulation through the REDD1-TSC pathway,” Cell Cycle, vol. 4, no. 11, pp. 1500–1502, 2005. View at Scopus
  238. J. Brugarolas, K. Lei, R. L. Hurley et al., “Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex,” Genes and Development, vol. 18, no. 23, pp. 2893–2904, 2004. View at Publisher · View at Google Scholar · View at Scopus
  239. C. M. Perks, E. G. Vernon, A. H. Rosendahl, D. Tonge, and J. M. Holly, “IGF-II and IGFBP-2 differentially regulate PTEN in human breast cancer cells,” Oncogene, vol. 26, no. 40, pp. 5966–5972, 2007. View at Publisher · View at Google Scholar · View at Scopus
  240. A. V. Lee, J. G. Jackson, J. L. Gooch et al., “Enhancement of insulin-like growth factor signaling in human breast cancer: estrogen regulation of insulin receptor substrate-1 expression in vitro and in vivo,” Molecular Endocrinology, vol. 13, no. 5, pp. 787–796, 1999. View at Scopus
  241. M. Gallí, F. Van Gool, and O. Leo, “Sirtuins and inflammation: friends or foes?” Biochemical Pharmacology, vol. 81, no. 5, pp. 569–576, 2011. View at Publisher · View at Google Scholar · View at Scopus
  242. H. Y. Cohen, C. Miller, K. J. Bitterman et al., “Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase,” Science, vol. 305, no. 5682, pp. 390–392, 2004. View at Publisher · View at Google Scholar · View at Scopus
  243. L. Qiang, H. Wang, and S. R. Farmer, “Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-Lα,” Molecular and Cellular Biology, vol. 27, no. 13, pp. 4698–4707, 2007. View at Publisher · View at Google Scholar · View at Scopus
  244. L. Qiao and J. Shao, “SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer- binding protein α transcriptional complex,” Journal of Biological Chemistry, vol. 281, no. 52, pp. 39915–39924, 2006. View at Publisher · View at Google Scholar · View at Scopus
  245. L. Bordone, D. Cohen, A. Robinson et al., “SIRT1 transgenic mice show phenotypes resembling calorie restriction,” Aging Cell, vol. 6, no. 6, pp. 759–767, 2007. View at Publisher · View at Google Scholar · View at Scopus
  246. K. M. Ramsey, K. F. Mills, A. Satoh, and S. I. Imai, “Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice,” Aging Cell, vol. 7, no. 1, pp. 78–88, 2008. View at Publisher · View at Google Scholar · View at Scopus
  247. S. Nemoto, M. M. Fergusson, and T. Finkel, “SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α,” Journal of Biological Chemistry, vol. 280, no. 16, pp. 16456–16460, 2005. View at Publisher · View at Google Scholar · View at Scopus
  248. E. Nisoli, C. Tonello, A. Cardile et al., “Cell biology: calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS,” Science, vol. 310, no. 5746, pp. 314–317, 2005. View at Publisher · View at Google Scholar · View at Scopus
  249. C. S. Lim, “SIRT1: tumor promoter or tumor suppressor?” Medical Hypotheses, vol. 67, no. 2, pp. 341–344, 2006. View at Publisher · View at Google Scholar · View at Scopus
  250. J. Ford, M. Jiang, and J. Milner, “Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival,” Cancer Research, vol. 65, no. 22, pp. 10457–10463, 2005. View at Publisher · View at Google Scholar · View at Scopus
  251. J. A. Baur and D. A. Sinclair, “Therapeutic potential of resveratrol: the in vivo evidence,” Nature Reviews Drug Discovery, vol. 5, no. 6, pp. 493–506, 2006. View at Publisher · View at Google Scholar · View at Scopus
  252. D. McGuinness, D. H. McGuinness, J. A. McCaul, P. G. Shiels, et al., “Sirtuins, bioageing, and cancer,” Journal of Aging Research, vol. 2011, Article ID 235754, 11 pages, 2011. View at Publisher · View at Google Scholar
  253. P. Trayhurn, B. Wang, and I. S. Wood, “Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity?” British Journal of Nutrition, vol. 100, no. 2, pp. 227–235, 2008. View at Publisher · View at Google Scholar · View at Scopus
  254. G. L. Semenza, “Targeting HIF-1 for cancer therapy,” Nature Reviews Cancer, vol. 3, no. 10, pp. 721–732, 2003. View at Scopus
  255. P. Vaupel and M. Hoeckel, “Predictive power of the tumor oxygenation status,” Advances in Experimental Medicine and Biology, vol. 471, pp. 533–539, 2000. View at Scopus
  256. H. K. Eltzschig and P. Carmeliet, “Hypoxia and inflammation,” The New England Journal of Medicine, vol. 364, no. 7, pp. 656–665, 2011. View at Publisher · View at Google Scholar · View at Scopus
  257. R. Cancello, C. Henegar, N. Viguerie et al., “Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss,” Diabetes, vol. 54, no. 8, pp. 2277–2286, 2005. View at Publisher · View at Google Scholar · View at Scopus
  258. Y. Higami, J. L. Barger, G. P. Page et al., “Energy restriction lowers the expression of genes linked to inflammation, the cytoskeleton, the extracellular matrix, and angiogenesis in mouse adipose tissue,” Journal of Nutrition, vol. 136, no. 2, pp. 343–352, 2006. View at Scopus
  259. M. Hofker and C. Wijmenga, “A supersized list of obesity genes,” Nature Genetics, vol. 41, no. 2, pp. 139–140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  260. P. D. P. Pharoah, A. C. Antoniou, D. F. Easton, and B. A. J. Ponder, “Polygenes, risk prediction, and targeted prevention of breast cancer,” The New England Journal of Medicine, vol. 358, no. 26, pp. 2796–2803, 2008. View at Publisher · View at Google Scholar · View at Scopus
  261. S. Ahmed, G. Thomas, M. Ghoussaini, C. S. Healey, M. K. Humphreys, R. Platte, et al., “Newly discovered breast cancer susceptibility loci on 3p24 and 17q23,” Nature Genetics, vol. 41, no. 5, pp. 585–590, 2009.
  262. A. Tenesa and M. G. Dunlop, “New insights into the aetiology of colorectal cancer from genome-wide association studies,” Nature Reviews Genetics, vol. 10, no. 6, pp. 353–358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  263. A. Tenesa, H. Campbell, E. Theodoratou et al., “Common genetic variants at the MC4R locus are associated with obesity, but not with dietary energy intake or colorectal cancer in the Scottish population,” International Journal of Obesity, vol. 33, no. 2, pp. 284–288, 2009. View at Publisher · View at Google Scholar · View at Scopus
  264. M. S. Rodeheffer, K. Birsoy, and J. M. Friedman, “Identification of white adipocyte progenitor cells in vivo,” Cell, vol. 135, no. 2, pp. 240–249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  265. A. H. Klopp, Y. Zhang, T. Solley, F. Amaya-Manzanares, F. Marini, M. Andreeff, et al., “Omental adipose tissue-derived stromal cells promote vascularization and growth of endometrial tumors,” Clinical Cancer Research, vol. 18, no. 3, pp. 771–782, 2012.
  266. Y. Zhang, A. C. Daquinag, F. Amaya-Manzanares, O. Sirin, C. Tseng, and M. G. Kolonin, “Stromal progenitor cells from endogenous adipose tissue contribute to pericytes and adipocytes that populate the tumor microenvironment,” Cancer Research, vol. 72, no. 20, pp. 5198–5208, 2012.
  267. S. Schenk, M. Saberi, and J. M. Olefsky, “Insulin sensitivity: modulation by nutrients and inflammation,” Journal of Clinical Investigation, vol. 118, no. 9, pp. 2992–3002, 2008. View at Publisher · View at Google Scholar · View at Scopus
  268. C. de Luca and J. M. Olefsky, “Inflammation and insulin resistance,” FEBS Letters, vol. 582, no. 1, pp. 97–105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  269. S. E. Kahn, B. Zinman, S. M. Haffner et al., “Obesity is a major determinant of the association of C-reactive protein levels and the metabolic syndrome in type 2 diabetes,” Diabetes, vol. 55, no. 8, pp. 2357–2364, 2006. View at Publisher · View at Google Scholar · View at Scopus
  270. G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, “Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance,” Science, vol. 259, no. 5091, pp. 87–91, 1993. View at Scopus
  271. C. S. Kim, H. S. Park, T. Kawada et al., “Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters,” International Journal of Obesity, vol. 30, no. 9, pp. 1347–1355, 2006. View at Publisher · View at Google Scholar · View at Scopus
  272. N. B. Ruderman, S. H. Schneider, and P. Berchtold, “The “metabolically-obese,” normal-weight individual,” American Journal of Clinical Nutrition, vol. 34, no. 8, pp. 1617–1621, 1981. View at Scopus
  273. R. P. Wildman, P. Muntner, K. Reynolds et al., “The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004),” Archives of Internal Medicine, vol. 168, no. 15, pp. 1617–1624, 2008. View at Publisher · View at Google Scholar · View at Scopus
  274. E. Succurro, M. A. Marini, S. Frontoni et al., “Insulin secretion in metabolically obese, but normal weight, and in metabolically healthy but obese individuals,” Obesity, vol. 16, no. 8, pp. 1881–1886, 2008. View at Publisher · View at Google Scholar · View at Scopus
  275. F. Wang, H. Liu, W. P. Blanton, A. Belkina, N. K. Lebrasseur, and G. V. Denis, “Brd2 disruption in mice causes severe obesity without Type 2 diabetes,” Biochemical Journal, vol. 425, no. 1, pp. 71–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  276. A. C. Belkina and G. V. Denis, “Obesity genes and insulin resistance,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 17, no. 5, pp. 472–477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  277. G. Sethi, M. K. Shanmugam, L. Ramachandran, A. P. Kumar, and V. Tergaonkar, “Multifaceted link between cancer and inflammation,” Bioscience Reports, vol. 32, no. 1, pp. 1–15, 2012.
  278. M. Visser, L. M. Bouter, G. M. McQuillan, M. H. Wener, and T. B. Harris, “Elevated C-reactive protein levels in overweight and obese adults,” Journal of the American Medical Association, vol. 282, no. 22, pp. 2131–2135, 1999. View at Publisher · View at Google Scholar · View at Scopus
  279. D. C. W. Lau, B. Dhillon, H. Yan, P. E. Szmitko, and S. Verma, “Adipokines: molecular links between obesity and atheroslcerosis,” American Journal of Physiology, vol. 288, no. 5, pp. H2031–H2041, 2005. View at Publisher · View at Google Scholar · View at Scopus
  280. A. Festa, R. D'Agostino, R. P. Tracy, and S. M. Haffner, “Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study,” Diabetes, vol. 51, no. 4, pp. 1131–1137, 2002. View at Scopus
  281. D. J. Freeman, J. Norrie, M. J. Caslake et al., “C-reactive protein is an independent predictor of risk for the development of diabetes in the west of Scotland coronary prevention study,” Diabetes, vol. 51, no. 5, pp. 1596–1600, 2002. View at Scopus
  282. T. P. Erlinger, E. A. Platz, N. Rifai, and K. J. Helzlsouer, “C-reactive protein and the risk of incident colorectal cancer,” Journal of the American Medical Association, vol. 291, no. 5, pp. 585–590, 2004. View at Publisher · View at Google Scholar · View at Scopus
  283. E. Volkova, J. A. Willis, J. E. Wells, B. A. Robinson, G. U. Dachs, and M. J. Currie, “Association of angiopoietin-2, C-reactive protein and markers of obesity and insulin resistance with survival outcome in colorectal cancer,” British Journal of Cancer, vol. 104, no. 1, pp. 51–59, 2011. View at Publisher · View at Google Scholar · View at Scopus
  284. J. H. Kim, R. A. Bachmann, and J. Chen, “Interleukin-6 and insulin resistance,” Vitamins & Hormones, vol. 80, pp. 613–633, 2009.
  285. H. S. Park, J. Y. Park, and R. Yu, “Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-α and IL-6,” Diabetes Research and Clinical Practice, vol. 69, no. 1, pp. 29–35, 2005. View at Publisher · View at Google Scholar · View at Scopus
  286. V. Syed, G. Ulinski, S. C. Mok, and S. M. Ho, “Reproductive hormone-induced, STAT3-mediated interleukin 6 action in normal and malignant human ovarian surface epithelial cells,” Journal of the National Cancer Institute, vol. 94, no. 8, pp. 617–629, 2002. View at Scopus
  287. V. Sriuranpong, J. I. Park, P. Amornphimoltham, V. Patel, B. D. Nelkin, and J. S. Gutkind, “Epidermal growth factor receptor-independent constitutive activation of STAT3 in head and neck squamous cell carcinoma is mediated by the autocrine/paracrine stimulation of the interleukin 6/gp130 cytokine system,” Cancer Research, vol. 63, no. 11, pp. 2948–2956, 2003. View at Scopus
  288. D. Giri, M. Ozen, and M. Ittmann, “Interleukin-6 is an autocrine growth factor in human prostate cancer,” American Journal of Pathology, vol. 159, no. 6, pp. 2159–2165, 2001. View at Scopus
  289. Y. Y. Li, L. L. Hsieh, R. P. Tang, S. K. Liao, and K. Y. Yeh, “Interleukin-6 (IL-6) released by macrophages induces IL-6 secretion in the human colon cancer HT-29 cell line,” Human Immunology, vol. 70, no. 3, pp. 151–158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  290. T. Yokoe, Y. Iino, H. Takei et al., “Changes of cytokines and thyroid function in patients with recurrent breast cancer,” Anticancer Research, vol. 17, no. 1 B, pp. 695–699, 1997. View at Scopus
  291. J. S. Goydos, A. M. Brumfield, E. Frezza, A. Booth, M. T. Lotze, and S. E. Carty, “Marked elevation of serum interleukin-6 in patients with cholangiocarcinoma: validation of utility as a clinical marker,” Annals of Surgery, vol. 227, no. 3, pp. 398–404, 1998. View at Publisher · View at Google Scholar · View at Scopus
  292. H. A. Preti, F. Cabanillas, M. Talpaz, S. L. Tucker, J. F. Seymour, and R. Kurzrock, “Prognostic value of serum interleukin-6 in diffuse large-cell lymphona,” Annals of Internal Medicine, vol. 127, no. 3, pp. 186–194, 1997. View at Scopus
  293. A. Dowlati, N. Levitan, and S. C. Remick, “Evaluation of interleukin-6 in bronchoalveolar lavage fluid and serum of patients with lung cancer,” Journal of Laboratory and Clinical Medicine, vol. 134, no. 4, pp. 405–409, 1999. View at Publisher · View at Google Scholar · View at Scopus
  294. R. Mouawad, A. Benhammouda, O. Rixe et al., “Endogenous interleukin 6 levels in patients with metastatic malignant melanoma: correlation with tumor burden,” Clinical Cancer Research, vol. 2, no. 8, pp. 1405–1409, 1996. View at Scopus
  295. A. Wierzbowska, H. Urbanska-Rys, and T. Robak, “Circulating IL-6-type cytokines and sIL-6R in patients with multiple myeloma,” British Journal of Haematology, vol. 105, no. 2, pp. 412–419, 1999.
  296. S. Okada, T. Okusaka, H. Ishii, A. Kyogoku, M. Yoshimori, N. Kajimura, et al., “Elevated serum interleukin-6 levels in patients with pancreatic cancer,” Japanese Journal of Clinical Oncology, vol. 28, no. 1, pp. 12–15, 1998.
  297. J. Nakashima, M. Tachibana, Y. Horiguchi et al., “Serum interleukin 6 as a prognostic factor in patients with prostate cancer,” Clinical Cancer Research, vol. 6, no. 7, pp. 2702–2706, 2000. View at Scopus
  298. J. Y. Blay, J. F. Rossi, J. Wijdenes, C. Menetrier-Caux, S. Schemann, S. Négrier, et al., “Role of interleukin-6 in the paraneoplastic inflammatory syndrome associated with renal-cell carcinoma,” International Journal of Cancer, vol. 72, no. 3, pp. 424–430, 1997.
  299. E. J. Park, J. H. Lee, G. Y. Yu et al., “Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression,” Cell, vol. 140, no. 2, pp. 197–208, 2010. View at Publisher · View at Google Scholar · View at Scopus
  300. G. He, G. Y. Yu, V. Temkin, H. Ogata, C. Kuntzen, T. Sakurai, et al., “Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation,” Cancer Cell, vol. 17, no. 3, pp. 286–297, 2010.
  301. B. Sun and M. Karin, “Obesity, inflammation, and liver cancer,” Journal of Hepatology, vol. 56, no. 3, pp. 704–713, 2012.
  302. T. H. Kim, S. E. Choi, E. S. Ha et al., “IL-6 induction of TLR-4 gene expression via STAT3 has an effect on insulin resistance in human skeletal muscle,” Acta Diabetologica, vol. 50, no. 2, pp. 189–200, 2013. View at Publisher · View at Google Scholar · View at Scopus
  303. J. J. Senn, P. J. Klover, I. A. Nowak, and R. A. Mooney, “Interleukin-6 induces cellular insulin resistance in hepatocytes,” Diabetes, vol. 51, no. 12, pp. 3391–3399, 2002. View at Scopus
  304. M. B. Olszewski, A. J. Groot, J. Dastych, and E. F. Knol, “TNF trafficking to human mast cell granules: mature chain-dependent endocytosis,” Journal of Immunology, vol. 178, no. 9, pp. 5701–5709, 2007. View at Scopus
  305. L. C. Gahring, N. G. Carlson, R. A. Kulmer, and S. W. Rogers, “Neuronal expression of tumor necrosis factor alpha in the murine brain,” NeuroImmunoModulation, vol. 3, no. 5, pp. 289–303, 1997. View at Scopus
  306. H. Wajant, K. Pfizenmaier, and P. Scheurich, “Tumor necrosis factor signaling,” Cell Death and Differentiation, vol. 10, no. 1, pp. 45–65, 2003. View at Publisher · View at Google Scholar · View at Scopus
  307. T. Tzanavari, P. Giannogonas, and K. P. Karalis, “TNF-α and obesity,” Current Directions in Autoimmunity, vol. 11, pp. 145–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  308. D. F. Jelinek and P. E. Lipsky, “Enhancement of human B cell proliferation and differentiation by tumor necrosis factor-α and interleukin 11,” Journal of Immunology, vol. 139, no. 9, pp. 2970–2976, 1987. View at Scopus
  309. T. Tao, Y. Ji, C. Cheng et al., “Tumor necrosis factor-alpha inhibits Schwann cell proliferation by up-regulating Src-suppressed protein kinase C substrate expression,” Journal of Neurochemistry, vol. 111, no. 3, pp. 647–655, 2009. View at Publisher · View at Google Scholar · View at Scopus
  310. B. Zinman, A. J. G. Hanley, S. B. Harris, J. Kwan, and I. G. Fantus, “Circulating tumor necrosis factor-α concentrations in a native canadian population with high rates of type 2 diabetes mellitus,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 1, pp. 272–278, 1999. View at Publisher · View at Google Scholar · View at Scopus
  311. K. T. Uysal, S. M. Wiesbrock, M. W. Marino, and G. S. Hotamisligil, “Protection from obesity-induced insulin resistance in mice lacking TNF- α function,” Nature, vol. 389, no. 6651, pp. 610–614, 1997. View at Publisher · View at Google Scholar · View at Scopus
  312. X. Wang and Y. Lin, “Tumor necrosis factor and cancer, buddies or foes?” Acta Pharmacologica Sinica, vol. 29, no. 11, pp. 1275–1288, 2008. View at Publisher · View at Google Scholar · View at Scopus
  313. M. Pera, C. Manterola, O. Vidal, and L. Grande, “Epidemiology of esophageal adenocarcinoma,” Journal of Surgical Oncology, vol. 92, no. 3, pp. 151–159, 2005. View at Publisher · View at Google Scholar · View at Scopus
  314. G. K. Reeves, K. Pirie, V. Beral, J. Green, E. Spencer, and D. Bull, “Cancer incidence and mortality in relation to body mass index in the Million Women Study: Cohort study,” British Medical Journal, vol. 335, no. 7630, pp. 1134–1139, 2007. View at Publisher · View at Google Scholar · View at Scopus
  315. A. Kubo and D. A. Corley, “Body mass index and adenocarcinomas of the esophagus or gastric cardia: a systematic review and meta-analysis,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 5, pp. 872–878, 2006. View at Publisher · View at Google Scholar · View at Scopus
  316. N. Pandeya, A. C. Green, and D. C. Whiteman, “Australian Cancer Study Prevalence and determinants of frequent gastroesophageal reflux symptoms in the Australian community,” Diseases of the Esophagus, vol. 25, no. 7, pp. 573–583, 2012.
  317. R. K. Wood and Y. X. Yang, “Barrett's esophagus in 2008: an update,” Keio Journal of Medicine, vol. 57, no. 3, pp. 132–138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  318. A. M. Ryan, M. Duong, L. Healy et al., “Obesity, metabolic syndrome and esophageal adenocarcinoma: epidemiology, etiology and new targets,” Cancer Epidemiology, vol. 35, no. 4, pp. 309–319, 2011. View at Publisher · View at Google Scholar · View at Scopus
  319. S. Nair, S. Verma, and P. J. Thuluvath, “Obesity and its effect on survival in patients undergoing orthotopic liver transplantation in the United States,” Hepatology, vol. 35, no. 1, pp. 105–109, 2002. View at Publisher · View at Google Scholar · View at Scopus
  320. J. M. Regimbeau, M. Columbat, P. Mognol et al., “Obesity and diabetes as a risk factor for hepatocellular carcinoma,” Liver Transplantation, vol. 10, no. 2, pp. S69–S73, 2004. View at Scopus
  321. W. H. Chow, G. Gridley, J. F. Fraumeni, and B. Järvholm, “Obesity, hypertension, and the risk of kidney cancer in men,” The New England Journal of Medicine, vol. 343, no. 18, pp. 1305–1311, 2000. View at Publisher · View at Google Scholar · View at Scopus
  322. T. Pischon, P. H. Lahmann, H. Boeing et al., et al., “Body size and risk of colon and rectal cancer in the European Prospective Investigation Into Cancer and Nutrition (EPIC),” Journal of the National Cancer Institute, vol. 98, no. 13, pp. 920–931, 2006.
  323. M. Jenab, E. Riboli, R. J. Cleveland et al., “Serum C-peptide, IGFBP-1 and IGFBP-2 and risk of colon and rectal cancers in the European prospective investigation into cancer and nutrition,” International Journal of Cancer, vol. 121, no. 2, pp. 368–376, 2007. View at Publisher · View at Google Scholar · View at Scopus
  324. M. S. Sandhu, D. B. Dunger, and E. L. Giovannucci, “Insulin, insulin-like growth factor-I (IGF-I), IGF binding proteins, their biologic interactions, and colorectal cancer,” Journal of the National Cancer Institute, vol. 94, no. 13, pp. 972–980, 2002. View at Scopus
  325. J. Ma, M. N. Pollak, E. Giovannucci et al., “Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3,” Journal of the National Cancer Institute, vol. 91, no. 7, pp. 620–625, 1999. View at Scopus
  326. A. G. Renehan, M. Zwahlen, C. Minder, S. T. O'Dwyer, S. M. Shalet, and M. Egger, “Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis,” The Lancet, vol. 363, no. 9418, pp. 1346–1353, 2004. View at Publisher · View at Google Scholar · View at Scopus
  327. S. A. Aaronson, “Growth factors and cancer,” Science, vol. 254, no. 5035, pp. 1146–1153, 1991. View at Scopus
  328. R. Kaaks and A. Lukanova, “Energy balance and cancer: the role of insulin and insulin-like growth factor-I,” Proceedings of the Nutrition Society, vol. 60, no. 1, pp. 91–106, 2001. View at Scopus
  329. P. Stattin, A. Lukanova, C. Biessy et al., “Obesity and colon cancer: does leptin provide a link?” International Journal of Cancer, vol. 109, no. 1, pp. 149–152, 2004. View at Publisher · View at Google Scholar · View at Scopus
  330. P. Stattin, R. Palmqvist, S. Söderberg et al., “Plasma leptin and colorectal cancer risk: a prospective study in Northern Sweden,” Oncology Reports, vol. 10, no. 6, pp. 2015–2021, 2003. View at Scopus
  331. C. L. Ogden, M. D. Carroll, L. R. Curtin, M. A. McDowell, C. J. Tabak, and K. M. Flegal, “Prevalence of overweight and obesity in the United States, 1999–2004,” Journal of the American Medical Association, vol. 295, no. 13, pp. 1549–1555, 2006. View at Publisher · View at Google Scholar · View at Scopus
  332. E. K. Wei, E. Giovannucci, C. S. Fuchs, W. C. Willett, and C. S. Mantzoros, “Low plasma adiponectin levels and risk of colorectal cancer in men: a prospective study,” Journal of the National Cancer Institute, vol. 97, no. 22, pp. 1688–1694, 2005. View at Publisher · View at Google Scholar · View at Scopus
  333. A. Lukanova, S. Söderberg, R. Kaaks, E. Jellum, and P. Stattin, “Serum adiponectin is not associated with risk of colorectal cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 2, pp. 401–402, 2006. View at Publisher · View at Google Scholar · View at Scopus
  334. D. C. McMillan, K. Canna, and C. S. McArdle, “Systemic inflammatory response predicts survival following curative resection of colorectal cancer,” British Journal of Surgery, vol. 90, no. 2, pp. 215–219, 2003. View at Publisher · View at Google Scholar · View at Scopus
  335. C. Miki, N. Konishi, E. Ojima, T. Hatada, Y. Inoue, and M. Kusunoki, “C-reactive protein as a prognostic variable that reflects uncontrolled up-regulation of the IL-1-IL-6 network system in colorectal carcinoma,” Digestive Diseases and Sciences, vol. 49, no. 6, pp. 970–976, 2004. View at Publisher · View at Google Scholar · View at Scopus
  336. J. E. M. Crozier, R. F. McKee, C. S. McArdle et al., “The presence of a systemic inflammatory response predicts poorer survival in patients receiving adjuvant 5-FU chemotherapy following potentially curative resection for colorectal cancer,” British Journal of Cancer, vol. 94, no. 12, pp. 1833–1836, 2006. View at Publisher · View at Google Scholar · View at Scopus
  337. M. Ishizuka, H. Nagata, K. Takagi, T. Horie, and K. Kubota, “Inflammation-based prognostic score is a novel predictor of postoperative outcome in patients with colorectal cancer,” Annals of Surgery, vol. 246, no. 6, pp. 1047–1051, 2007. View at Publisher · View at Google Scholar · View at Scopus
  338. J. E. M. Crozier and D. C. McMillan, “Authors' reply: Preoperative but not postoperative systemic inflammatory response correlates with survival in colorectal cancer,” British Journal of Surgery, vol. 94, no. 11, pp. 1439–1440, 2007. View at Publisher · View at Google Scholar · View at Scopus
  339. M. Ishizuka, J. Kita, M. Shimoda et al., “Systemic inflammatory response predicts postoperative outcome in patients with liver metastases from colorectal cancer,” Journal of Surgical Oncology, vol. 100, no. 1, pp. 38–42, 2009. View at Publisher · View at Google Scholar · View at Scopus
  340. E. M. Siegel, C. M. Ulrich, E. M. Poole, R. S. Holmes, P. B. Jacobsen, and D. Shibata, “The effects of obesity and obesity-related conditions on colorectal cancer prognosis,” Cancer Control, vol. 17, no. 1, pp. 52–57, 2010. View at Scopus
  341. L. M. Forrest, D. C. McMillan, C. S. McArdle, W. J. Angerson, and D. J. Dunlop, “Evaluation of cumulative prognostic scores based on the systemic inflammatory response in patients with inoperable non-small-cell lung cancer,” British Journal of Cancer, vol. 89, no. 6, pp. 1028–1030, 2003. View at Publisher · View at Google Scholar · View at Scopus
  342. A. M. Al Murri, J. M. S. Bartlett, P. A. Canney, J. C. Doughty, C. Wilson, and D. C. McMillan, “Evaluation of an inflammation-based prognostic score (GPS) in patients with metastatic breast cancer,” British Journal of Cancer, vol. 94, no. 2, pp. 227–230, 2006. View at Publisher · View at Google Scholar · View at Scopus
  343. A. B. C. Crumley, D. C. McMillan, M. McKernan, A. C. McDonald, and R. C. Stuart, “Evaluation of an inflammation-based prognostic score in patients with inoperable gastro-oesophageal cancer,” British Journal of Cancer, vol. 94, no. 5, pp. 637–641, 2006. View at Publisher · View at Google Scholar · View at Scopus
  344. D. C. McMillan, J. E. M. Crozier, K. Canna, W. J. Angerson, and C. S. McArdle, “Evaluation of an inflammation-based prognostic score (GPS) in patients undergoing resection for colon and rectal cancer,” International Journal of Colorectal Disease, vol. 22, no. 8, pp. 881–886, 2007. View at Publisher · View at Google Scholar · View at Scopus
  345. E. F. Leitch, M. Chakrabarti, J. E. M. Crozier et al., “Comparison of the prognostic value of selected markers of the systemic inflammatory response in patients with colorectal cancer,” British Journal of Cancer, vol. 97, no. 9, pp. 1266–1270, 2007. View at Publisher · View at Google Scholar · View at Scopus
  346. A. T. Chan, S. Ogino, and C. S. Fuchs, “Aspirin use and survival after diagnosis of colorectal cancer,” Journal of the American Medical Association, vol. 302, no. 6, pp. 649–658, 2009. View at Publisher · View at Google Scholar · View at Scopus
  347. F. Osorio-Costa, G. Z. Rocha, M. M. Dias, and J. B. Carvalheira, “Epidemiological and molecular mechanisms aspects linking obesity and cancer,” Arquivos Brasileiros de Endocrinologia & Metabologia, vol. 53, no. 2, pp. 213–226, 2009.
  348. R. C. Travis and T. J. Key, “Oestrogen exposure and breast cancer risk,” Breast Cancer Research, vol. 5, no. 5, pp. 239–247, 2003. View at Publisher · View at Google Scholar · View at Scopus
  349. C. Schairer, D. Hill, S. R. Sturgeon et al., “Serum concentrations of IGF-I, IGFBP-3 and c-peptide and risk of hyperplasia and cancer of the breast in postmenopausal women,” International Journal of Cancer, vol. 108, no. 5, pp. 773–779, 2004. View at Publisher · View at Google Scholar · View at Scopus
  350. P. Toniolo, P. F. Bruning, A. Akhmedkhanov, J. M. Bonfrer, K. L. Koenig, A. Lukanova, et al., “Serum insulin-like growth factor-I and breast cancer,” International Journal of Cancer, vol. 88, no. 5, pp. 828–832, 2000.
  351. R. Kaaks, P. Toniolo, A. Akhmedkhanov et al., “Serum C-peptide, insulin-like growth factor (IGF)-I, IGF-binding proteins, and colorectal cancer risk in women,” Journal of the National Cancer Institute, vol. 92, no. 19, pp. 1592–1600, 2000. View at Scopus
  352. G. Yang, G. Lu, F. Jin et al., “Population-based, case-control study of blood C-peptide level and breast cancer risk,” Cancer Epidemiology Biomarkers and Prevention, vol. 10, no. 11, pp. 1207–1211, 2001. View at Scopus
  353. P. J. Goodwin, M. Ennis, K. I. Pritchard et al., “Insulin-like growth factor binding proteins 1 and 3 and breast cancer outcomes,” Breast Cancer Research and Treatment, vol. 74, no. 1, pp. 65–76, 2002. View at Publisher · View at Google Scholar · View at Scopus
  354. L. Tessitore, B. Vizio, D. Pesola et al., “Adipocyte expression and circulating levels of leptin increase in both gynaecological and breast cancer patients,” International Journal of Oncology, vol. 24, no. 6, pp. 1529–1535, 2004. View at Scopus
  355. A. Maccio and C. Madeddu, “Obesity, inflammation, and postmenopausal breast cancer: therapeutic implications,” Scientific World Journal, vol. 11, pp. 2020–2036, 2011.
  356. N. Yin, D. Wang, H. Zhang et al., “Molecular mechanisms involved in the growth stimulation of breast cancer cells by leptin,” Cancer Research, vol. 64, no. 16, pp. 5870–5875, 2004. View at Publisher · View at Google Scholar · View at Scopus
  357. W. Metzler, S. Fischer, C. Köhler, F. Pistrosch, B. Kindel, and M. Hanefeld, “Insulin resistance and metabolic parameters in type 2 diabetic patients,” European Journal of Internal Medicine, vol. 13, no. 2, pp. 108–114, 2002. View at Publisher · View at Google Scholar · View at Scopus
  358. Y. Matsuzawa, “Adiponectin: identification, physiology and clinical relevance in metabolic and vascular disease,” Atherosclerosis Supplements, vol. 6, no. 2, pp. 7–14, 2005. View at Publisher · View at Google Scholar · View at Scopus
  359. A. Schäffler, H. Herfarth, G. Paul et al., “Identification of influencing variables on adiponectin serum levels in diabetes mellitus type 1 and type 2,” Experimental and Clinical Endocrinology and Diabetes, vol. 112, no. 7, pp. 383–389, 2004. View at Publisher · View at Google Scholar · View at Scopus
  360. E. Brakenhielm, N. Veitonm?ki, R. Cao, S. Kihara, Y. Matsuzawa, et al., “Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 8, pp. 2476–2481, 2004.
  361. M. Pignatelli, C. Cocca, A. Santos, and A. Perez-Castillo, “Enhancement of BRCA1 gene expression by the peroxisome proliferator-activated receptor γ in the MCF-7 breast cancer cell line,” Oncogene, vol. 22, no. 35, pp. 5446–5450, 2003. View at Publisher · View at Google Scholar · View at Scopus
  362. A. Purohit, S. P. Newman, and M. J. Reed, “The role of cytokines in regulating estrogen synthesis: implications for the etiology of breast cancer,” Breast Cancer Research, vol. 4, no. 2, pp. 65–69, 2002. View at Publisher · View at Google Scholar · View at Scopus
  363. M. L. Slattery, K. Curtin, C. Sweeney et al., “Modifying effects of IL-6 polymorphisms on body size-associated breast cancer risk,” Obesity, vol. 16, no. 2, pp. 339–347, 2008. View at Publisher · View at Google Scholar · View at Scopus
  364. B. Dirat, L. Bochet, M. Dabek et al., “Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion,” Cancer Research, vol. 71, no. 7, pp. 2455–2465, 2011. View at Publisher · View at Google Scholar · View at Scopus
  365. B. L. Pierce, R. Ballard-Barbash, L. Bernstein et al., “Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients,” Journal of Clinical Oncology, vol. 27, no. 21, pp. 3437–3444, 2009. View at Publisher · View at Google Scholar · View at Scopus
  366. A. Lukanova, E. Lundin, A. Micheli et al., “Circulating levels of sex steroid hormones and risk of endometrial cancer in postmenopausal women,” International Journal of Cancer, vol. 108, no. 3, pp. 425–432, 2004. View at Publisher · View at Google Scholar · View at Scopus
  367. A. S. Greenberg and M. L. McDaniel, “Identifying the links between obesity, insulin resistance and β-cell function: potential role of adipocyte-derived cytokines in the pathogenesis of type 2 diabetes,” European Journal of Clinical Investigation, vol. 32, no. 3, pp. 24–34, 2002. View at Scopus
  368. V. Chopra, T. V. Dinh, and E. V. Hannigan, “Serum levels of interleukins, growth factors and angiogenin in patients with endometrial cancer,” Journal of Cancer Research and Clinical Oncology, vol. 123, no. 3, pp. 167–172, 1997. View at Publisher · View at Google Scholar · View at Scopus
  369. R. Punnonen, K. Teisala, T. Kuoppala, B. Bennett, and J. Punnonen, “Cytokine production profiles in the peritoneal fluids of patients with malignant or benign gynecologic tumors,” Cancer, vol. 83, no. 4, pp. 788–796, 1998.
  370. S. Bellone, K. Watts, S. Cane' et al., “High serum levels of interleukin-6 in endometrial carcinoma are associated with uterine serous papillary histology, a highly aggressive and chemotherapy-resistant variant of endometrial cancer,” Gynecologic Oncology, vol. 98, no. 1, pp. 92–98, 2005. View at Publisher · View at Google Scholar · View at Scopus
  371. M. Slater, M. Cooper, and C. R. Murphy, “Human growth hormone and interleukin-6 are upregulated in endometriosis and endometrioid adenocarcinoma,” Acta Histochemica, vol. 108, no. 1, pp. 13–18, 2006. View at Publisher · View at Google Scholar · View at Scopus
  372. L. Dossus, S. Rinaldi, S. Becker et al., “Obesity, inflammatory markers, and endometrial cancer risk: a prospective Case—Control Study,” Endocrine-Related Cancer, vol. 17, no. 4, pp. 1007–1019, 2010. View at Publisher · View at Google Scholar · View at Scopus
  373. T. E. Vaskivuo, F. Stenbäck, and J. S. Tapanainen, “Apoptosis and apoptosis-related factors Bcl-2, Bax, tumor necrosis factor-α, and NF-κB in human endometrial hyperplasia and carcinoma,” Cancer, vol. 95, no. 7, pp. 1463–1471, 2002. View at Publisher · View at Google Scholar · View at Scopus
  374. J. Pallares, J. L. Martínez-Guitarte, X. Dolcet et al., “Abnormalities in the NF-κB family and related proteins in endometrial carcinoma,” Journal of Pathology, vol. 204, no. 5, pp. 569–577, 2004. View at Publisher · View at Google Scholar · View at Scopus
  375. A. Purohit and M. J. Reed, “Regulation of estrogen synthesis in postmenopausal women,” Steroids, vol. 67, no. 12, pp. 979–983, 2002. View at Publisher · View at Google Scholar · View at Scopus