About this Journal Submit a Manuscript Table of Contents
ISRN Oncology
Volume 2013 (2013), Article ID 859154, 8 pages
Review Article

The Chemokine CXCL8 in Carcinogenesis and Drug Response

1Center for Cancer Research and Department of Pathobiology, Tuskegee University, 1200 Old Montgomery Road, School of Veterinary Medicine, Tuskegee, AL 36830, USA
2Morehouse School of Medicine, 720 Westview Drive, S.W., Atlanta, GA 30310, USA
3Department of Pathology, and Comprehensive Cancer Center, University of Alabama, Birmingham, 1720 Second Avenue South, AL 35294, USA

Received 17 June 2013; Accepted 8 September 2013

Academic Editors: P. Balaram, G. E. Lind, and K. van Golen

Copyright © 2013 Dominique Gales et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Although the functions of chemokines in the regulation of immune processes have been studied in some detail, the role of these biomolecules in cancer is not fully understood. Chemokines mediate migration of immune cells and other functions related to immunity. They are also involved in oncogenesis and in tumor progression, invasion, and metastasis through mechanisms similar to their roles in immune functions. Various chemokines also promote cell proliferation and resistance to apoptosis of stressed cells. Consequently, chemokines and their receptors present potential therapeutic targets for anticancer drugs. The chemokine CXCL8, also known as interleukin-8 (IL8), is a proinflammatory molecule that has functions within the tumor microenvironment. Due to its potent angiogenic effects and the activity of the chemokine and its receptors in the promotion of invasion and metastasis, CXCL8 and its receptors are now considered as attractive targets for cancer therapy. This review relates the current understanding of the regulation, signaling, and functions of CXCL8 that contribute to tumor growth and metastasis, and of its role in drug response.