About this Journal Submit a Manuscript Table of Contents
ISRN Oncology
Volume 2013 (2013), Article ID 859154, 8 pages
http://dx.doi.org/10.1155/2013/859154
Review Article

The Chemokine CXCL8 in Carcinogenesis and Drug Response

1Center for Cancer Research and Department of Pathobiology, Tuskegee University, 1200 Old Montgomery Road, School of Veterinary Medicine, Tuskegee, AL 36830, USA
2Morehouse School of Medicine, 720 Westview Drive, S.W., Atlanta, GA 30310, USA
3Department of Pathology, and Comprehensive Cancer Center, University of Alabama, Birmingham, 1720 Second Avenue South, AL 35294, USA

Received 17 June 2013; Accepted 8 September 2013

Academic Editors: P. Balaram, G. E. Lind, and K. van Golen

Copyright © 2013 Dominique Gales et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. A. Lira and G. C. Furtado, “The biology of chemokines and their receptors,” Immunologic Research, vol. 54, no. 1–3, pp. 111–120, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Zlotnik and O. Yoshie, “Chemokines: a new classification system and their role in immunity,” Immunity, vol. 12, no. 2, pp. 121–127, 2000. View at Scopus
  3. F. Balkwill, “Cancer and the chemokine network,” Nature Reviews, vol. 4, no. 7, pp. 540–550, 2004. View at Scopus
  4. D. Raman, P. J. Baugher, Y. M. Thu, and A. Richmond, “Role of chemokines in tumor growth,” Cancer Letters, vol. 256, no. 2, pp. 137–165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Baggiolini, B. Dewald, and B. Moser, “Human chemokines: an update,” Annual Review of Immunology, vol. 15, pp. 675–705, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Opdenakker and J. van Damme, “Chemotactic factors, passive invasion and metastasis of cancer cells,” Immunology Today, vol. 13, no. 11, pp. 463–464, 1992. View at Scopus
  7. D. Rossi and A. Zlotnik, “The biology of chemokines and their receptors,” Annual Review of Immunology, vol. 18, pp. 217–242, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Vandercappellen, J. van Damme, and S. Struyf, “The role of CXC chemokines and their receptors in cancer,” Cancer Letters, vol. 267, no. 2, pp. 226–244, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. N. Mueller, K. A. Hosiawa-Meagher, B. T. Konieczny et al., “Regulation of homeostatic chemokine expression and cell trafficking during immune responses,” Science, vol. 317, no. 5838, pp. 670–674, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. G. Cyster, “Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs,” Annual Review of Immunology, vol. 23, pp. 127–159, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. M. D. Miller and M. S. Krangel, “Biology and biochemistry of the chemokines: a family of chemotactic and inflammatory cytokines,” Critical Reviews in Immunology, vol. 12, no. 1-2, pp. 17–46, 1992. View at Scopus
  12. D. Arenberg, “Chemokines in the biology of lung cancer,” Journal of Thoracic Oncology, vol. 1, no. 4, pp. 287–288, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Brigati, D. M. Noonan, A. Albini, and R. Benelli, “Tumors and inflammatory infiltrates: friends or foes?” Clinical & Experimental Metastasis, vol. 19, no. 3, pp. 247–258, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Erreni, A. Mantovani, and P. Allavena, “Tumor-associated macrophages (TAM) and inflammation in colorectal cancer,” Cancer Microenvironment, vol. 4, no. 2, pp. 141–154, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-related inflammation,” Nature, vol. 454, no. 7203, pp. 436–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Sparmann and D. Bar-Sagi, “Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis,” Cancer Cell, vol. 6, no. 5, pp. 447–458, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. M. G. Borrello, D. Degl'Innocenti, and M. A. Pierotti, “Inflammation and cancer: the oncogene-driven connection,” Cancer Letters, vol. 267, no. 2, pp. 262–270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Egeblad, E. S. Nakasone, and Z. Werb, “Tumors as organs: complex tissues that interface with the entire organism,” Developmental Cell, vol. 18, no. 6, pp. 884–901, 2010. View at Scopus
  20. S. L. Topalian, G. J. Weiner, and D. M. Pardoll, “Cancer immunotherapy comes of age,” Journal of Clinical Oncology, vol. 29, no. 36, pp. 4828–4836, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. J. Grimshaw and F. R. Balkwill, “Inhibition of monocyte and macrophage chemotaxis by hypoxia and inflammation—a potential mechanism,” European Journal of Immunology, vol. 31, no. 2, pp. 480–489, 2001.
  22. L. A. Khawli, P. Hu, and A. L. Epstein, “Cytokine, chemokine, and co-stimulatory fusion proteins for the immunotherapy of solid tumors,” in Handbook of Experimental Pharmacology, vol. 181, pp. 291–328, 2008. View at Scopus
  23. R. Bonecchi, M. Locati, and A. Mantovani, “Chemokines and cancer: a fatal attraction,” Cancer Cell, vol. 19, no. 4, pp. 434–435, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Farrow, D. Albo, and D. H. Berger, “The role of the tumor microenvironment in the progression of pancreatic cancer,” Journal of Surgical Research, vol. 149, no. 2, pp. 319–328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Lazennec and A. Richmond, “Chemokines and chemokine receptors: new insights into cancer-related inflammation,” Trends in Molecular Medicine, vol. 16, no. 3, pp. 133–144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Schadendorf, A. Moller, B. Algermissen, M. Worm, M. Sticherling, and B. M. Czarnetzki, “IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor,” The Journal of Immunology, vol. 151, no. 5, pp. 2667–2675, 1993. View at Scopus
  27. B. J. Rollins, “Where the confusion began: cloning the first chemokine receptors,” The Journal of Immunology, vol. 183, no. 5, pp. 2893–2894, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Matsushima, E. T. Baldwin, and N. Mukaida, “Interleukin-8 and MCAF: novel leukocyte recruitment and activating cytokines,” Chemical Immunology, vol. 51, pp. 236–265, 1992. View at Scopus
  29. R. M. Strieter, S. L. Kunkel, H. J. Showell et al., “Endothelial cell gene expression of a neutrophil chemotactic factor by TNF-α, LPS, and IL-1β,” Science, vol. 243, no. 4897, pp. 1467–1469, 1989. View at Scopus
  30. D. J. Brat, A. C. Bellail, and E. G. van Meir, “The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis,” Neuro-Oncology, vol. 7, no. 2, pp. 122–133, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. W. E. Holmes, J. Lee, W. J. Kuang, G. C. Rice, and W. I. Wood, “Structure and functional expression of a human interleukin-8 receptor,” Science, vol. 253, no. 5025, pp. 1278–1280, 1991. View at Scopus
  32. P. M. Murphy and H. L. Tiffany, “Cloning of complementary DNA encoding a functional human interleukin-8 receptor,” Science, vol. 253, no. 5025, pp. 1280–1283, 1991. View at Scopus
  33. E. Azenshtein, T. Meshel, S. Shina, N. Barak, I. Keydar, and A. Ben-Baruch, “The angiogenic factors CXCL8 and VEGF in breast cancer: regulation by an array of pro-malignancy factors,” Cancer Letters, vol. 217, no. 1, pp. 73–86, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Brysse, M. Mestdagt, M. Polette et al., “Regulation of CXCL8/IL-8 expression by zonula occludens-1 in human breast cancer cells,” Molecular Cancer Research, vol. 10, no. 1, pp. 121–132, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Balkwill, “Chemokine biology in cancer,” Seminars in Immunology, vol. 15, no. 1, pp. 49–55, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. M. Zhu and P. J. Woll, “Mitogenic effects of interleukin-8/CXCL8 on cancer cells,” Future Oncology, vol. 1, no. 5, pp. 699–704, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Brew, J. S. Erikson, D. C. West, A. R. Kinsella, J. Slavin, and S. E. Christmas, “Interleukin-8 as an autocrine growth factor for human colon carcinoma cells in vitro,” Cytokine, vol. 12, no. 1, pp. 78–85, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Miyamoto, Y. Shimizu, K. Okada, Y. Kashii, K. Higuchi, and A. Watanabe, “Effect of interleukin-8 on production of tumor-associated substances and autocrine growth of human liver and pancreatic cancer cells,” Cancer Immunology, Immunotherapy, vol. 47, no. 1, pp. 47–57, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Li, M. L. Varney, and R. K. Singh, “Constitutive expression of growth regulated oncogene (gro) in human colon carcinoma cells with different metastatic potential and its role in regulating their metastatic phenotype,” Clinical & Experimental Metastasis, vol. 21, no. 7, pp. 571–579, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. M. Zhu, S. J. Webster, D. Flower, and P. J. Woll, “Interleukin-8/CXCL8 is a growth factor for human lung cancer cells,” British Journal of Cancer, vol. 91, no. 11, pp. 1970–1976, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Li, M. L. Varney, J. Valasek, M. Godfrey, B. J. Dave, and R. K. Singh, “Autocrine role of interleukin-8 in induction of endothelial cell proliferation, survival, migration and MMP-2 production and angiogenesis,” Angiogenesis, vol. 8, no. 1, pp. 63–71, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Ren, R. T. Poon, H. T. Tsui et al., “Interleukin-8 serum levels in patients with hepatocellular carcinoma: correlations with clinicopathological features and prognosis,” Clinical Cancer Research, vol. 9, no. 16, part 1, pp. 5996–6001, 2003. View at Scopus
  43. T. Ueda, E. Shimada, and T. Urakawa, “Serum levels of cytokines in patients with colorectal cancer: possible involvement of interleukin-6 and interleukin-8 in hematogenous metastasis,” Journal of Gastroenterology, vol. 29, no. 4, pp. 423–429, 1994. View at Publisher · View at Google Scholar · View at Scopus
  44. F. Balkwill and A. Mantovani, “Inflammation and cancer: back to Virchow?” The Lancet, vol. 357, no. 9255, pp. 539–545, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Mantovani, R. Bonecchi, and M. Locati, “Tuning inflammation and immunity by chemokine sequestration: decoys and more,” Nature Reviews, vol. 6, no. 12, pp. 907–918, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. B. B. Aggarwal and B. Sung, “NF-κB in cancer: a matter of life and death,” Cancer Discovery, vol. 1, no. 6, pp. 469–471, 2011.
  47. F. Rodier, J.-P. Coppé, C. K. Patil et al., “Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion,” Nature Cell Biology, vol. 11, no. 8, pp. 973–979, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Terzić, S. Grivennikov, E. Karin, and M. Karin, “Inflammation and colon cancer,” Gastroenterology, vol. 138, no. 6, pp. 2101.e5–2114.e5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. F. R. Greten, L. Eckmann, T. F. Greten et al., “IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer,” Cell, vol. 118, no. 3, pp. 285–296, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Maeda, M. Akanuma, Y. Mitsuno et al., “Distinct mechanism of helicobacter pylori-mediated NF-κB activation between gastric cancer cells and monocytic cells,” The Journal of Biological Chemistry, vol. 276, no. 48, pp. 44856–44864, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. S. A. Sharma, M. K. R. Tummuru, M. J. Blaser, and L. D. Kerr, “Activation of IL-8 gene expression by Helicobacter pylori is regulated by transcription factor nuclear factor-κB in gastric epithelial cells,” The Journal of Immunology, vol. 160, no. 5, pp. 2401–2407, 1998. View at Scopus
  52. C.-Y. Wu, C.-J. Wang, C.-C. Tseng et al., “Helicobacter pylori promote gastric cancer cells invasion through a NF-κB and COX-2-mediated pathway,” World Journal of Gastroenterology, vol. 11, no. 21, pp. 3197–3203, 2005. View at Scopus
  53. N. S. Rial, G. Lazennec, A. R. Prasad, R. S. Krouse, P. Lance, and E. W. Gerner, “Regulation of deoxycholate induction of CXCL8 by the adenomatous polyposis coli gene in colorectal cancer,” International Journal of Cancer, vol. 124, no. 10, pp. 2270–2280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Zhang, L. Wang, M. Zhang, M. Jin, C. Bai, and X. Wang, “Potential mechanism of interleukin-8 production from lung cancer cells: an involvement of EGF-EGFR-PI3K-Akt-Erk pathway,” Journal of Cellular Physiology, vol. 227, no. 1, pp. 35–43, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Li, M. L. Varney, and R. K. Singh, “Expression of interleukin 8 and its receptors in human colon carcinoma cells with different metastatic potentials,” Clinical Cancer Research, vol. 7, no. 10, pp. 3298–3304, 2001. View at Scopus
  56. R. K. Singh, M. Gutman, R. Radinsky, C. D. Bucana, and I. J. Fidler, “Expression of interleukin 8 correlates with the metastatic potential of human melanoma cells in nude mice,” Cancer Research, vol. 54, no. 12, pp. 3242–3247, 1994. View at Scopus
  57. Q. Wang, N. Huber, G. Noel et al., “NF-κβ inhibition is ineffective in blocking cytokine-induced IL-8 production but P38 and STAT1 inhibitors are effective,” Inflammation Research, vol. 61, no. 9, pp. 977–985, 2012. View at Publisher · View at Google Scholar
  58. H. Kulbe, N. R. Levinson, F. Balkwill, and J. L. Wilson, “The chemokine network in cancer—much more than directing cell movement,” International Journal of Developmental Biology, vol. 48, no. 5-6, pp. 489–496, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. I. U. Schraufstatter, J. Chung, and M. Burger, “IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways,” American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 280, no. 6, pp. L1094–L1103, 2001. View at Scopus
  60. M. Q. Li, X. Z. Luo, Y. H. Meng et al., “CXCL8 enhances proliferation and growth and reduces apoptosis in endometrial stromal cells in an autocrine manner via a CXCR1-triggered PTEN/AKT signal pathway,” Human Reproduction, vol. 27, no. 7, pp. 2107–2116, 2012. View at Publisher · View at Google Scholar
  61. H. C. Lane, A. R. Anand, and R. K. Ganju, “Cbl and Akt regulate CXCL8-induced and CXCR1- and CXCR2-mediated chemotaxis,” International Immunology, vol. 18, no. 8, pp. 1315–1325, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Venkatakrishnan, R. Salgia, and J. E. Groopman, “Chemokine receptors CXCR-1/2 activate mitogen-activated protein kinase via the epidermal growth factor receptor in ovarian cancer cells,” The Journal of Biological Chemistry, vol. 275, no. 10, pp. 6868–6875, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. F. Luppi, A. M. Longo, W. I. de Boer, K. F. Rabe, and P. S. Hiemstra, “Interleukin-8 stimulates cell proliferation in non-small cell lung cancer through epidermal growth factor receptor transactivation,” Lung Cancer, vol. 56, no. 1, pp. 25–33, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. C. F. MacManus, J. Pettigrew, A. Seaton et al., “Interleukin-8 signaling promotes translational regulation of cyclin D in androgen-independent prostate cancer cells,” Molecular Cancer Research, vol. 5, no. 7, pp. 737–748, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. R. M. Richardson, H. Ali, B. C. Pridgen, B. Haribabu, and R. Snyderman, “Multiple signaling pathways of human interleukin-8 receptor A: independent regulation by phosphorylation,” The Journal of Biological Chemistry, vol. 273, no. 17, pp. 10690–10695, 1998. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Inoue, J. W. Slaton, B. Y. Eve et al., “Interleukin 8 expression regulates tumorigenicity and metastases in androgen-independent prostate cancer,” Clinical Cancer Research, vol. 6, no. 5, pp. 2104–2119, 2000. View at Scopus
  67. M. Karin and F. R. Greten, “NF-κB: linking inflammation and immunity to cancer development and progression,” Nature Reviews, vol. 5, no. 10, pp. 749–759, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. P. M. F. Siesser and S. K. Hanks, “The signaling and biological implications of FAK overexpression in cancer,” Clinical Cancer Research, vol. 12, no. 11, part 1, pp. 3233–3237, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. J. C. Acosta, A. O'Loghlen, A. Banito et al., “Chemokine signaling via the CXCR2 receptor reinforces senescence,” Cell, vol. 133, no. 6, pp. 1006–1018, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. T. Kuilman, C. Michaloglou, L. C. W. Vredeveld et al., “Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network,” Cell, vol. 133, no. 6, pp. 1019–1031, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Vincent-Salomon and J. P. Thiery, “Host microenvironment in breast cancer development: epithelia-mesenchymal transition in breast cancer development,” Breast Cancer Research, vol. 5, no. 2, pp. 101–106, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. B. B. McConnell and V. W. Yang, “The role of inflammation in the pathogenesis of colorectal cancer,” Current Colorectal Cancer Reports, vol. 5, no. 2, pp. 69–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. A. J. Wilson, K. Byron, and P. R. Gibson, “Interleukin-8 stimulates the migration of human colonic epithelial cells in vitro,” Clinical Science, vol. 97, no. 3, pp. 385–390, 1999. View at Publisher · View at Google Scholar · View at Scopus
  74. X. J. Li, L. X. Peng, J. Y. Shao et al., “As an independent unfavorable prognostic factor, IL-8 promotes metastasis of nasopharyngeal carcinoma through induction of epithelial-mesenchymal transition and activation of AKT signaling,” Carcinogenesis, vol. 33, no. 7, pp. 1302–1309, 2012. View at Publisher · View at Google Scholar
  75. W. E. Holmes, J. Lee, W. J. Kuang, G. C. Rice, and W. I. Wood, “Structure and functional expression of a human interleukin-8 receptor. Science. 1991. 253: 1278-1280,” The Journal of Immunology, vol. 183, no. 5, pp. 2895–2897, 2009. View at Scopus
  76. R. I. Fernando, M. D. Castillo, M. Litzinger, D. H. Hamilton, and C. Palena, “IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells,” Cancer Research, vol. 71, no. 15, pp. 5296–5306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. H. Iguchi, M. Ono, K. Matsushima, and M. Kuwano, “Overproduction of IL-8 results in suppression of bone metastasis by lung cancer cells in vivo,” International Journal of Oncology, vol. 17, no. 2, pp. 329–333, 2000. View at Scopus
  78. N. Mukaida, “Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases,” American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 284, no. 4, pp. L566–L577, 2003. View at Scopus
  79. J.-P. Coppé, C. K. Patil, F. Rodier et al., “Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor,” PLoS Biology, vol. 6, no. 12, article e301, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Müller, B. Homey, H. Soto et al., “Involvement of chemokine receptors in breast cancer metastasis,” Nature, vol. 410, no. 6824, pp. 50–56, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. J. V. den Bossche, B. Malissen, A. Mantovani, P. de Baetselier, and J. A. van Ginderachter, “Regulation and function of the E-cadherin/catenin complex in cells of the monocyte-macrophage lineage and DCs,” Blood, vol. 119, no. 7, pp. 1623–1633, 2012. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Saalbach, C. Klein, J. Sleeman et al., “Dermal fibroblasts induce maturation of dendritic cells,” The Journal of Immunology, vol. 178, no. 8, pp. 4966–4974, 2007. View at Scopus
  83. M. B. Lutz and G. Schuler, “Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity?” Trends in Immunology, vol. 23, no. 9, pp. 445–449, 2002. View at Publisher · View at Google Scholar · View at Scopus
  84. I. Tabas and C. K. Glass, “Anti-inflammatory therapy in chronic disease: challenges and opportunities,” Science, vol. 339, no. 6116, pp. 166–172, 2013. View at Publisher · View at Google Scholar
  85. T. T. Huang, S. M. Wuerzberger-Davis, B. J. Seufzer et al., “NF-κB activation by camptothecin. A linkage between nuclear dna damage and cytoplasmic signaling events,” The Journal of Biological Chemistry, vol. 275, no. 13, pp. 9501–9509, 2000. View at Publisher · View at Google Scholar · View at Scopus
  86. A. V. Prasad, N. Mohan, B. Chandrasekar, and M. L. Meltz, “Activation of nuclear factor κB in human lymphoblastoid cells by low-dose ionizing radiation,” Radiation Research, vol. 138, no. 3, pp. 367–372, 1994. View at Publisher · View at Google Scholar · View at Scopus
  87. H. L. Pahl, “Activators and target genes of Rel/NF-κB transcription factors,” Oncogene, vol. 18, no. 49, pp. 6853–6866, 1999. View at Scopus
  88. J. Huang, J. L. Yao, L. Zhang et al., “Differential expression of interleukin-8 and its receptors in the neuroendocrine and non-neuroendocrine compartments of prostate cancer,” The American Journal of Pathology, vol. 166, no. 6, pp. 1807–1815, 2005. View at Scopus
  89. A. C. Bharti and B. B. Aggarwal, “Nuclear factor-κ B and cancer: its role in prevention and therapy,” Biochemical Pharmacology, vol. 64, no. 5-6, pp. 883–888, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. A. Bellocq, M. Antoine, A. Flahault et al., “Neutrophil alveolitis in bronchioloalveolar carcinoma: induction by tumor-derived interleukin-8 and relation to clinical outcome,” The American Journal of Pathology, vol. 152, no. 1, pp. 83–92, 1998. View at Scopus
  91. M. Haraguchi, K. Komuta, A. Akashi, S. Matsuzaki, J. Furui, and T. Kanematsu, “Elevated IL-8 levels in the drainage vein of resectable Dukes' C colorectal cancer indicate high risk for developing hepatic metastasis,” Oncology Reports, vol. 9, no. 1, pp. 159–165, 2002. View at Scopus
  92. T. Kantola, K. Klintrup, J. P. Väyrynen, et al., “Stage-dependent alterations of the serum cytokine pattern in colorectal carcinoma,” British Journal of Cancer, vol. 107, no. 10, pp. 1729–1736, 2012. View at Publisher · View at Google Scholar
  93. H. Kuniyasu, W. Yasui, H. Shinohara et al., “Induction of angiogenesis by hyperplastic colonic mucosa adjacent to colon cancer,” The American Journal of Pathology, vol. 157, no. 5, pp. 1523–1535, 2000. View at Scopus
  94. S. L. McCarron, S. Edwards, P. R. Evans et al., “Influence of cytokine gene polymorphisms on the development of prostate cancer,” Cancer Research, vol. 62, no. 12, pp. 3369–3372, 2002. View at Scopus
  95. T. S. Collins, L.-F. Lee, and J. P.-Y. Ting, “Paclitaxel up-regulates interleukin-8 synthesis in human lung carcinoma through an NF-κB- and AP-1-dependent mechanism,” Cancer Immunology, Immunotherapy, vol. 49, no. 2, pp. 78–84, 2000. View at Publisher · View at Google Scholar · View at Scopus
  96. C. Wilson, P. J. Maxwell, D. B. Longley, R. H. Wilson, P. G. Johnston, and D. J. J. Waugh, “Constitutive and treatment-induced CXCL8-signalling selectively modulates the efficacy of anti-metabolite therapeutics in metastatic prostate cancer,” PLoS ONE, vol. 7, no. 5, Article ID e36545, 2012. View at Publisher · View at Google Scholar
  97. F. Biasi, T. Guina, M. Maina et al., “Progressive increase of matrix metalloprotease-9 and interleukin-8 serum levels during carcinogenic process in human colorectal tract,” PLoS ONE, vol. 7, no. 7, Article ID e41839, 2012. View at Publisher · View at Google Scholar
  98. S. Bünger, U. Haug, F. M. Kelly et al., “Toward standardized high-throughput serum diagnostics: multiplex-protein array identifies IL-8 and VEGF as serum markers for colon cancer,” Journal of Biomolecular Screening, vol. 16, no. 9, pp. 1018–1026, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. V. I. F. Slettenaar and J. L. Wilson, “The chemokine network: a target in cancer biology?” Advanced Drug Delivery Reviews, vol. 58, no. 8, pp. 962–974, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. K. L. Widdowson, J. D. Elliott, D. F. Veber et al., “Evaluation of potent and selective small-molecule antagonists for the CXCR2 chemokine receptor,” Journal of Medicinal Chemistry, vol. 47, no. 6, pp. 1319–1321, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. M. L. Varney, S. Singh, A. Li, R. Mayer-Ezell, R. Bond, and R. K. Singh, “Small molecule antagonists for CXCR2 and CXCR1 inhibit human colon cancer liver metastases,” Cancer Letters, vol. 300, no. 2, pp. 180–188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. S. Singh, A. Sadanandam, K. C. Nannuru et al., “Small-molecule antagonists for CXCR2 and CXCR1 inhibit human melanoma growth by decreasing tumor cell proliferation, survival, and angiogenesis,” Clinical Cancer Research, vol. 15, no. 7, pp. 2380–2386, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. J. Busch-Petersen, “Small molecule antagonists of the CXCR2 and CXCR1 chemokine receptors as therapeutic agents for the treatment of inflammatory diseases,” Current Topics in Medicinal Chemistry, vol. 6, no. 13, pp. 1345–1352, 2006. View at Scopus
  104. Y. Ning, M. J. Labonte, W. Zhang, et al., “The CXCR2 antagonist, SCH-527123, shows antitumor activity and sensitizes cells to oxaliplatin in preclinical colon cancer models,” Molecular Cancer Therapeutics, vol. 11, no. 6, pp. 1353–1364, 2012. View at Publisher · View at Google Scholar