About this Journal Submit a Manuscript Table of Contents
ISRN Oncology
Volume 2014 (2014), Article ID 687365, 7 pages
http://dx.doi.org/10.1155/2014/687365
Clinical Study

Magnitude and Implications of Interfraction Variations in Organ Doses during High Dose Rate Brachytherapy of Cervix Cancer: A CT Based Planning Study

Department of Radiotherapy, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India

Received 6 November 2013; Accepted 26 November 2013; Published 3 February 2014

Academic Editors: G. E. Kim and L.-M. Sun

Copyright © 2014 Santam Chakraborty et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Nag, B. Erickson, B. Thomadsen, C. Orton, J. D. Demanes, and D. Petereit, “The American Brachytherapy Society recommendations for high-dose-rate brachytherapy for carcinoma of the cervix,” International Journal of Radiation Oncology Biology Physics, vol. 48, no. 1, pp. 201–211, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Y. Kim, J. T. Meyer, W. E. Plott et al., “Major geometric variations between multiple high-dose-rate applications of brachytherapy in cancer of the cervix: frequency and types of variation,” Radiology, vol. 195, no. 2, pp. 419–422, 1995. View at Scopus
  3. R. R. Rutten, A. A. Lawyer, and P. Berner, “Dose variation due to differences in applicator placement used for intracavitary brachytherapy of cervical cancer,” Medical Dosimetry, vol. 23, no. 1, pp. 57–63, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. H. T. Pham, Y. Chen, E. Rouby, R. A. Lustig, and P. E. Wallner, “Changes in high-dose-rate tandem and ovoid applicator positions during treatment in an unfixed brachytherapy system,” Radiology, vol. 206, no. 2, pp. 525–531, 1998. View at Scopus
  5. J. Huerta Bahena, A. Martinez, D. Yan et al., “Spatial reproducibility of the ring and tandem high-dose rate cervix applicator,” International Journal of Radiation Oncology Biology Physics, vol. 41, no. 1, pp. 13–19, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. N. R. Datta, S. Kumar, K. J. M. Das, C. M. Pandey, S. Halder, and S. Ayyagari, “Variations of intracavitary applicator geometry during multiple HDR brachytherapy insertions in carcinoma cervix and its influence on reporting as per ICRU report 38,” Radiotherapy and Oncology, vol. 60, no. 1, pp. 15–24, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. N. D. Jones, J. Rankin, and D. K. Gaffney, “Is simulation necessary for each high-dose-rate tandem and ovoid insertion in carcinoma of the cervix?” Brachytherapy, vol. 3, no. 3, pp. 120–124, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Garipağaoğlu, N. Tunçel, M. G. Dalmaz et al., “Changes in applicator positions and dose distribution between high dose rate brachytherapy fractions in cervix carcinoma patients receiving definitive radiotherapy,” British Journal of Radiology, vol. 79, no. 942, pp. 504–509, 2006. View at Publisher · View at Google Scholar
  9. C. Ebruli, A. N. Demiral, R. Çetingöz, F. Eyiler, and M. Kinay, “The variability of applicator position among high dose rate intracavitary brachytherapy applications in cervical cancer patients treated with ring & tandem applicators,” Tumori, vol. 93, no. 5, pp. 432–438, 2007. View at Scopus
  10. T. P. Hellebust, K. Tanderup, E. S. Bergstrand, B. H. Knutsen, J. Røislien, and D. R. Olsen, “Reconstruction of a ring applicator using CT imaging: impact of the reconstruction method and applicator orientation,” Physics in Medicine and Biology, vol. 52, no. 16, article 012, pp. 4893–4904, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Pötter, C. Haie-Meder, E. Van Limbergen et al., “Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy—3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology,” Radiotherapy and Oncology, vol. 78, no. 1, pp. 67–77, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. F. D. Patel, B. Rai, I. Mallick, and S. C. Sharma, “High-dose-rate brachytherapy in uterine cervical carcinoma,” International Journal of Radiation Oncology Biology Physics, vol. 62, no. 1, pp. 125–130, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. T. M. Davidson, J. Yuen, D. P. D'Souza, and D. L. Batchelar, “Image-guided cervix high-dose-rate brachytherapy treatment planning: does custom computed tomography planning for each insertion provide better conformal avoidance of organs at risk?” Brachytherapy, vol. 7, no. 1, pp. 37–42, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Kirisits, S. Lang, J. Dimopoulos, K. Oechs, D. Georg, and R. Pötter, “Uncertainties when using only one MRI-based treatment plan for subsequent high-dose-rate tandem and ring applications in brachytherapy of cervix cancer,” Radiotherapy and Oncology, vol. 81, no. 3, pp. 269–275, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Polo, F. Cattani, A. Vavassori et al., “MR and CT image fusion for postimplant analysis in permanent prostate seed implants,” International Journal of Radiation Oncology Biology Physics, vol. 60, no. 5, pp. 1572–1579, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Pötter, C. Kirisits, E. F. Fidarova et al., “Present status and future of high-precision image guided adaptive brachytherapy for cervix carcinoma,” Acta Oncologica, vol. 47, no. 7, pp. 1325–1336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Xiong, A. Viswanathan, A. J. Stewart et al., “Deformable structure registration of bladder through surface mapping,” Medical Physics, vol. 33, no. 6, pp. 1848–1856, 2006. View at Publisher · View at Google Scholar · View at Scopus