About this Journal Submit a Manuscript Table of Contents
ISRN Ophthalmology
Volume 2013 (2013), Article ID 384134, 6 pages
http://dx.doi.org/10.1155/2013/384134
Clinical Study

Subconjunctival Bevacizumab Injection in Glaucoma Filtering Surgery: A Case Control Series

1Department of Ophthalmology, Maisonneuve-Rosemont Hospital, 5415 Boulevard de l’ Assomption, Montreal, QC, Canada H1T 2M4
2Ophthalmology Service, Department of Surgery, Centre Hospitalier Université de Sherbrooke, Hôtel Dieu, 580 Bowen Sud, Sherbrooke, QC, Canada J1G 2E8

Received 8 January 2013; Accepted 21 January 2013

Academic Editors: B. V. Bui, M. Nakazawa, and L. Pierro

Copyright © 2013 Jing Wang and Paul Harasymowycz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. M. Addicks, H. A. Quigley, W. R. Green, and A. L. Robin, “Histologic characteristics of filtering blebs in glaucomatous eyes,” Archives of Ophthalmology, vol. 101, no. 5, pp. 795–798, 1983. View at Scopus
  2. Five-year follow-up of the Fluorouracil Filtering Surgery Study, “The Fluorouracil Filtering Surgery Study Group,” American Journal of Ophthalmology, vol. 121, no. 4, pp. 349–366, 1996.
  3. D. S. Greenfidd, J. M. Liebmann, J. Jee, and R. Ritch, “Late-onset bleb leaks after glaucoma filtering surgery,” Archives of Ophthalmology, vol. 116, no. 4, pp. 443–447, 1998. View at Scopus
  4. D. S. Greenfield, I. J. Suñer, M. P. Miller, T. A. Kangas, P. F. Palmberg, and H. W. Flynn, “Endophthalmitis after filtering surgery with mitomycin,” Archives of Ophthalmology, vol. 114, no. 8, pp. 943–949, 1996. View at Scopus
  5. P. Khaw, F. Grehn, G. Hollo, B. Overton, R. Wilson, R. Vogel, et al., “A phase III study of subconjunctival human anti-transforming growth factor beta(2) monoclonal antibody (CAT-152) to prevent scarring after first-time trabeculectomy,” Ophthalmology, vol. 114, no. 10, pp. 1822–1830, 2007. View at Publisher · View at Google Scholar
  6. Z. Li, T. van Bergen, S. van de Veire et al., “Inhibition of vascular endothelial growth factor reduces scar formation after glaucoma filtration surgery,” Investigative Ophthalmology and Visual Science, vol. 50, no. 11, pp. 5217–5225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. Coote, J. B. Ruddle, Q. Qin, and J. G. Crowston, “Vascular changes after intra-bleb injection of bevacizumab,” Journal of Glaucoma, vol. 17, no. 7, pp. 517–518, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. D. S. Grewal, R. Jain, H. Kumar, and S. P. S. Grewal, “Evaluation of subconjunctival bevacizumab as an adjunct to trabeculectomy. A Pilot study,” Ophthalmology, vol. 115, no. 12, pp. 2141–2145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Sengupta, R. Venkatesh, and R. D. Ravindran, “Safety and efficacy of using off-label Bevacizumab versus mitomycin C to prevent bleb failure in a single-site phacotrabeculectomy by a randomized controlled clinical trial,” Journal of Glaucoma, vol. 21, no. 7, pp. 450–459, 2012. View at Publisher · View at Google Scholar
  10. N. Nilforushan, M. Yadgari, S. K. Kish, and N. Nassiri, “Subconjunctival bevacizumab versus mitomycin C adjunctive to trabeculectomy,” American Journal of Ophthalmology, vol. 153, no. 2, pp. 352–357, 2012.
  11. J. Wong, N. Wang, J. W. Miller, and J. S. Schuman, “Modulation of human fibroblast activity by selected angiogenesis inhibitors,” Experimental Eye Research, vol. 58, no. 4, pp. 439–451, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. Li, T. van Bergen, S. van de Veire et al., “Inhibition of vascular endothelial growth factor reduces scar formation after glaucoma filtration surgery,” Investigative Ophthalmology and Visual Science, vol. 50, no. 11, pp. 5217–5225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. E. C. O'Neill, Q. Qin, N. J. van Bergen et al., “Antifibrotic activity of bevacizumab on human tenon's fibroblasts in vitro,” Investigative Ophthalmology and Visual Science, vol. 51, no. 12, pp. 6524–6532, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Memarzadeh, R. Varma, L. T. Lin et al., “Postoperative use of bevacizumab as an antifibrotic agent in glaucoma filtration surgery in the rabbit,” Investigative Ophthalmology and Visual Science, vol. 50, no. 7, pp. 3233–3237, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. How, J. L. L. Chua, A. Charlton et al., “Combined treatment with bevacizumab and 5-Fluorouracil attenuates the postoperative scarring response after experimental glaucoma filtration surgery,” Investigative Ophthalmology and Visual Science, vol. 51, no. 2, pp. 928–932, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. F. A. Scappaticci, L. Fehrenbacher, T. Cartwright et al., “Surgical wound healing complications in metastatic colorectal cancer patients treated with bevacizumab,” Journal of Surgical Oncology, vol. 91, no. 3, pp. 173–180, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Y. Kahook, “Bleb morphology and vascularity after trabeculectomy with intravitreal ranibizumab: a Pilot study,” American Journal of Ophthalmology, vol. 150, no. 3, pp. 399–403, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Nomoto, F. Shiraga, N. Kuno et al., “Pharmacokinetics of bevacizumab after topical, subconjunctival, and intravitreal administration in rabbits,” Investigative Ophthalmology and Visual Science, vol. 50, no. 10, pp. 4807–4813, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Ferrara, H. P. Gerber, and J. LeCouter, “The biology of VEGF and its receptors,” Nature Medicine, vol. 9, no. 6, pp. 669–676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Bochmann, C. Kaufmann, C. N. Becht et al., “ISRCTN12125882—influence of topical anti-VEGF (Ranibizumab) on the outcome of filtration surgery for glaucoma—study protocol,” BMC Ophthalmology, vol. 11, no. 1, article 1, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Kamba and D. M. McDonald, “Mechanisms of adverse effects of anti-VEGF therapy for cancer,” British Journal of Cancer, vol. 96, no. 12, pp. 1788–1795, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. A. E. Fung, P. J. Rosenfeld, and E. Reichel, “The International Intravitreal Bevacizumab Safety Survey: using the internet to assess drug safety worldwide,” British Journal of Ophthalmology, vol. 90, no. 11, pp. 1344–1349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. L. J. Wong, R. U. Desai, A. Jain et al., “Surveillance for potential adverse events associated with the use of intravitreal bevacizumab for retinal and choroidal vascular disease,” Retina, vol. 28, no. 8, pp. 1151–1158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. N. M. Bressler, D. S. Boyer, D. F. Williams, S. Butler, S. F. Francom, B. Brown, et al., “Cerebrovascular accidents in patients treated for choroidal neovascularization with ranibiumab in randomized controlled trials,” Retina, vol. 32, no. 9, pp. 1821–1828, 2012.
  25. D. N. Hu, R. Ritch, J. Liebmann, Y. Liu, B. Cheng, and M. S. Hu, “Vascular endothelial growth factor is increased in aqueous humor of glaucomatous eyes,” Journal of Glaucoma, vol. 11, no. 5, pp. 406–410, 2002. View at Scopus
  26. P. L. Lip, D. C. Felmeden, A. D. Blann et al., “Plasma vascular endothelial growth factor, soluble VEGF receptor FLT-1, and von Willebrand factor in glaucoma,” British Journal of Ophthalmology, vol. 86, no. 11, pp. 1299–1302, 2002. View at Publisher · View at Google Scholar · View at Scopus