About this Journal Submit a Manuscript Table of Contents
ISRN Organic Chemistry
Volume 2011 (2011), Article ID 920753, 5 pages
http://dx.doi.org/10.5402/2011/920753
Research Article

Computational Study of Coordinated Ni(II) Complex with High Nitrogen Content Ligands

School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Received 29 January 2011; Accepted 21 March 2011

Academic Editors: A. Barbero, G. Giambastiani, and C. Thomas

Copyright © 2011 Bo Tang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. R. Manaa, E. J. Reed, L. E. Fried, and N. Goldman, “Nitrogen-rich heterocycles as reactivity retardants in shocked insensitive explosives,” Journal of the American Chemical Society, vol. 131, no. 15, pp. 5483–5487, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. J. C. Gálvez-Ruiz, G. Holl, K. Karaghiosoff et al., “Derivatives of 1,5-diamino-1H-tetrazole: a new family of energetic heterocyclic-based salts,” Inorganic Chemistry, vol. 44, no. 12, pp. 4237–4253, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. D. L. Strout, “Cage isomers of N14 and N16: nitrogen molecules that are not a multiple of six,” Journal of Physical Chemistry A, vol. 108, no. 49, pp. 10911–10916, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Y. Bruney, T. M. Bledson, and D. L. Strout, “What makes an N12 cage stable?” Inorganic Chemistry, vol. 42, no. 24, pp. 8117–8120, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. A. Hammerl and T. M. Klapötke, “Tetrazolylpentazoles: nitrogen-rich compounds,” Inorganic Chemistry, vol. 41, no. 4, pp. 906–912, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Karaghiosoff, T. M. Klapötke, P. Mayer, C. M. Sabaté, A. Penger, and J. M. Welch, “Salts of methylated 5-aminotetrazoles with energetic anions,” Inorganic Chemistry, vol. 47, no. 3, pp. 1007–1019, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. Z. X. Chen, J. M. Xiao, H. M. Xiao, and Y. N. Chiu, “Studies on heats of formation for tetrazole derivatives with density functional theory B3LYP method,” Journal of Physical Chemistry A, vol. 103, no. 40, pp. 8062–8066, 1999.
  8. C. Sita, V. K. Mohan, and M. G. R. Reddy, “Studies on thermal decomposition and explosive properties of some novel metal complexes of aryl mercapto tetrazoles,” Journal of Energetic Materials, vol. 11, pp. 1–37, 1993.
  9. M. H. V. Huynh, M. A. Hiskey, and R. Gilardi, “Preparation and explosive properties of tetraamminebis(3,5-dinitro-1,2,4- triazolato-N1 )copper(II),” Journal of Energetic Materials, vol. 23, no. 1, pp. 27–32, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Comet, V. Pichot, B. Siegert, F. Schnell, F. Ciszek, and D. Spitzer, “Phosphorus-based nanothermites: a new generation of energetic materials,” Journal of Physics and Chemistry of Solids, vol. 71, no. 2, pp. 64–68, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Bian, Y. Chang, and J. Zhang, “Theoretical studies on the magnetic bistability of dinickel complex tuned by azide,” Journal of Physical Chemistry A, vol. 112, no. 14, pp. 3186–3191, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. P. Mukherjee, M. G. B. Drew, C. J. Gómez-García, and A. Ghosh, “The crucial role of polyatomic anions in molecular architecture: structural and magnetic versatility of five nickel(II) complexes derived from A N,N,O-donor schiff base ligand,” Inorganic Chemistry, vol. 48, no. 13, pp. 5848–5860, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. P. Paul and K. Nag, “Sulfur-nitrogen-bonded metal chelates. 18. 1,3-dipolar cycloadditions to coordinated azide in nickel(II) complexes of the types [Ni(S-N-N)(N3)] and [S-N-N)Ni(N3)Ni(N-N-S)](ClO4)],” Inorganic Chemistry, vol. 26, no. 18, pp. 2969–2974, 1987. View at Scopus
  14. A. N. Georgopoulou, C. P. Raptopoulou, V. Psycharis, R. Ballesteros, B. Abarca, and A. K. Boudalis, “Ferromagnetic Cu4II, Co4II, and Ni6II azido complexes derived from metal-assisted methanolysis of di-2,6-(2-pyridylcarbonyl)pyridine,” Inorganic Chemistry, vol. 48, pp. 3167–3176, 2009.
  15. S. Mandai, V. Balamurugan, F. Lloret, and R. Mukherjee, “Syntheses, X-ray structures, and physicochemical properties of phenoxo-bridged dinuclear nickel(II) complexes: kinetics of transesterification of 2-hydroxypropyl-p-nitrophenylphosphate,” Inorganic Chemistry, vol. 48, no. 16, pp. 7544–7556, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. J. Liu, J. Xiao, S. B. Choi et al., “The electronic structures of Co and Ni tetraazaannulenes,” Journal of Physical Chemistry B, vol. 110, no. 51, pp. 26180–26184, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. S. Chattopadhyay, T. Deb, J. L. Petersen, V. G. Young, and M. P. Jensen, “Steric titration of arylthiolate coordination modes at pseudotetrahedral nickel(II) centers,” Inorganic Chemistry, vol. 49, no. 2, pp. 457–467, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. T. M. Klapötke and C. M. Sabaté, “Nitrogen-rich tetrazolium azotetrazolate salts: a new family of insensitive energetic materials,” Chemistry of Materials, vol. 20, no. 5, pp. 1750–1763, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. T. M. Klapötke, J. Stierstorfer, and A. U. Wallek, “Nitrogen-rich salts of 1-methyl-5-nitriminotetrazolate: an auspicious class of thermally stable energetic materials,” Chemistry of Materials, vol. 20, no. 13, pp. 4519–4530, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. N. J. Mayhall, K. Raghavachari, P. C. Redfern, and L. A. Curtiss, “Investigation of gaussian4 theory for transition metal thermochemistry,” Journal of Physical Chemistry A, vol. 113, no. 17, pp. 5170–5175, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. P. E. M. Siegbahn, “Quantum chemical studies of redox-active enzymes,” Faraday Discussions, vol. 124, pp. 289–296, 2003. View at Scopus
  22. D. V. Chachkov and O. V. Mikhailov, “DFT B3LYP calculation of the spatial structure of Co(II), Ni(II), and Cu(II) template complexes formed in ternary systems metal(II) ion-dithiooxamide-formaldehyde,” Russian Journal of Inorganic Chemistry, vol. 54, no. 12, pp. 1952–1956, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. H. B. Schlegel, “Optimization of equilibrium geometries and transition structures,” Journal of Physical Chemistry, vol. 3, pp. 214–218, 1982.
  24. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision B.03, Gaussian, Inc., Pittsburgh, Pa, USA, 2003.
  25. M. W. Wong, “Vibrational frequency prediction using density functional theory,” Chemical Physics Letters, vol. 256, no. 4-5, pp. 391–399, 1996. View at Scopus