About this Journal Submit a Manuscript Table of Contents
ISRN Organic Chemistry
Volume 2012 (2012), Article ID 342738, 7 pages
http://dx.doi.org/10.5402/2012/342738
Research Article

“On-Water” Catalyst-Free Ecofriendly Synthesis of the Hantzsch Dihydropyridines

1Department of Chemistry, Taki Government College, North 24 Pgs 743 429, India
2Department of Chemistry, Surendranath Evening College, Kolkata 700 009, India
3Department of Chemistry, Jadavpur University, Kolkata 700 032, India

Received 5 April 2012; Accepted 13 May 2012

Academic Editors: G. Giambastiani, G. Kirsch, and I. Tellitu

Copyright © 2012 Amit Pramanik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Mauzerall and F. H. Westheimer, “1-Benzyldihydronicotinamide—a model for reduced DPN,” Journal of the American Chemical Society, vol. 77, no. 8, pp. 2261–2264, 1955. View at Scopus
  2. V. Klusa, “Cerebrocrast. Neuroprotectant, cognition enhancer,” Drugs of the Future, vol. 20, no. 2, pp. 135–138, 1995. View at Scopus
  3. R. S. Kumar, A. Idhayadhulla, A. J. A. Nasser, and J. Selvin, “Synthesis and anticoagulant activity of a new series of 1,4-dihydropyridine derivatives,” European Journal of Medicinal Chemistry, vol. 46, no. 2, pp. 804–810, 2011.
  4. R. Boer and V. Gekeler, “Chemosensitizers in tumor therapy: new compounds promise better efficacy,” Drugs of the Future, vol. 20, no. 5, pp. 499–509, 1995.
  5. F. Bossert, H. Meyer, and E. Wehinger, “4-Aryldihydropyridines, a new class of highly active calcium antagonists,” Angewandte Chemie International Edition, vol. 20, no. 9, pp. 762–769, 1981. View at Scopus
  6. N. Nakamichi, Y. Kawashita, and M. Hayashi, “Activated carbon-promoted oxidative aromatization of Hantzsch 1,4-dihydropyridines and 1,3,5-trisubstituted pyrazolines using molecular oxygen,” Synthesis, no. 7, pp. 1015–1020, 2004. View at Scopus
  7. B. Han, Q. Liu, Z. Liu et al., “A metal-free catalytic aerobic aromatization of Hantzsch 1,4-dihydropyridines by N-hydroxyphthalimide,” Synlett, no. 15, pp. 2333–2334, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. A. McKillop and A. J. Boulton, “Synthesis of six-membered rings,” in Comprehensive Heterocyclic Chemistry, A. R. Katritzky and C. W. Rees, Eds., vol. 2, pp. 87–88, Pergamon Press, London, UK, 1984.
  9. L. Öhberg and J. Westman, “An efficient and fast procedure for the Hantzsch dihydropyridine synthesis under microwave conditions,” Synlett, no. 8, pp. 1296–1298, 2001. View at Scopus
  10. J. S. Yadav, B. V. Subba Reddy, P. Thirupati, et al., “Unprecedented synthesis of Hantzsch 1,4-dihydropyridines under biginelli reaction conditions,” Synthetic Communications, vol. 31, no. 3, pp. 425–430, 2001.
  11. M. Anniyappam, D. Muralidharan, and P. T. Perumal, “Synthesis of Hantzsch 1, 4-dihydropyridines under microwave irradiation,” Synthetic Communications, vol. 32, no. 4, pp. 659–663, 2002. View at Publisher · View at Google Scholar
  12. R. S. Varma, Advances in Green Chemistry: Chemical Syntheses Using Microwave Irradiation, AstraZeneca Research Foundation India, Bangalore, India, 2003.
  13. G. V. M. Sharma, K. L. Reddy, P. S. Lakshmi, and P. R. Krishna, “‘In situ’ generated “HCl”—an efficient catalyst for solvent-free Hantzsch reaction at room temperature: Synthesis of new dihydropyridine glycoconjugates,” Synthesis, no. 1, Article ID P05205SS, pp. 55–58, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. K. L. Bridgwood, G. E. Veitch, and S. V. Ley, “Magnesium nitride as a convenient source of ammonia: preparation of dihydropyridines,” Organic Letters, vol. 10, no. 16, pp. 3627–3629, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Khalili, P. Jajarmi, B. Eftekhari-Sis, and M. M. Hashemi, “Novel one-pot, three-component synthesis of new 2-alkyl-5-aryl-(1H)-pyrrole-4-ol in water,” Journal of Organic Chemistry, vol. 73, no. 6, pp. 2090–2095, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. M. Heravi, S. Sadjadi, H. A. Oskooie, R. H. Shoar, and F. F. Bamoharram, “A direct oxidative route for the synthesis of pyrimidines using heteropolyacids,” Tetrahedron Letters, vol. 50, no. 6, pp. 662–666, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Sabitha, G. S. K. K. Reddy, C. S. Reddy, and J. S. Yadav, “A novel TMSI-mediated synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature,” Tetrahedron Letters, vol. 44, no. 21, pp. 4129–4131, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Tewari, N. Dwivedi, and R. P. Tripathi, “Tetrabutylammonium hydrogen sulfate catalyzed eco-friendly and efficient synthesis of glycosyl 1,4-dihydropyridines,” Tetrahedron Letters, vol. 45, no. 49, pp. 9011–9014, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. J. H. Lee, “Synthesis of Hantsch 1,4-dihydropyridines by fermenting bakers' yeast,” Tetrahedron Letters, vol. 46, no. 43, pp. 7329–7330, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Kumar and R. A. Maurya, “Efficient synthesis of Hantzsch esters and polyhydroquinoline derivatives in aqueous micelles,” Synlett, no. 6, pp. 883–885, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Debache, R. Boulcina, A. Belfaitah, S. Rhouati, and B. Carboni, “One-pot synthesis of 1,4-dihydropyridines via a phenylboronic acid catalyzed Hantzsch three-component reaction,” Synlett, no. 4, pp. 509–512, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Debache, W. Ghalem, R. Boulcina, A. Belfaitah, S. Rhouati, and B. Carboni, “An efficient one-step synthesis of 1,4-dihydropyridines via a triphenylphosphine-catalyzed three-component Hantzsch reaction under mild conditions,” Tetrahedron Letters, vol. 50, no. 37, pp. 5248–5250, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Tang, R. Bourne, R. Smith, and M. Poliakoff, “The 24 principles of green engineering and green chemistry: ‘Improvements Productively’,” Green Chemistry, vol. 10, no. 3, pp. 268–269, 2008. View at Publisher · View at Google Scholar
  24. R. Breslow, “Hydrophobic effects on simple organic reactions in water,” Accounts of Chemical Research, vol. 24, no. 6, pp. 159–164, 1991. View at Publisher · View at Google Scholar
  25. J. B. F. N. Engberts and M. J. Blandamer, “Understanding organic reactions in water: from hydrophobic encounters to surfactant aggregates,” Chemical Communications, no. 18, pp. 1701–1708, 2001. View at Scopus
  26. S. Mecking, A. Held, and F. M. Bauers, “Aqueous catalytic polymerization of olefins,” Angewandte Chemie International Edition, vol. 41, no. 4, pp. 544–561, 2002. View at Publisher · View at Google Scholar
  27. N. E. Leadbeater and M. Marco, “Rapid and amenable Suzuki coupling reaction in water using microwave and conventional heating,” Journal of Organic Chemistry, vol. 68, no. 3, pp. 888–892, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Yamaguchi, M. Matsushita, and N. Mizuno, “Efficient hydration of nitriles to amides in water, catalyzed by ruthenium hydroxide supported on alumina,” Angewandte Chemie International Edition, vol. 43, no. 12, pp. 1576–1580, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Minakata, D. Kano, Y. Oderaotoshi, and M. Komatsu, “Silica-water reaction media: its application to the formation and ring opening of aziridines,” Angewandte Chemie International Edition, vol. 43, no. 1, pp. 79–81, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. N. E. Leadbeater, “Fast, easy, clean chemistry by using water as a solvent and microwave heating: the Suzuki coupling as an illustration,” Chemical Communications, vol. 23, pp. 2881–2902, 2005. View at Publisher · View at Google Scholar
  31. S. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb, and K. B. Sharpless, “‘On water’: unique reactivity of organic compounds in aqueous suspension,” Angewandte Chemie International Edition, vol. 44, no. 21, pp. 3275–3279, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Buchammagari, Y. Toda, M. Hirano, H. Hosono, D. Takeuchi, and K. Osakada, “Room temperature-stable electride as a synthetic organic reagent: application to pinacol coupling reaction in aqueous media,” Organic Letters, vol. 9, no. 21, pp. 4287–4289, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Shapiro and A. Vigalok, “Highly efficient organic reactions “on water”, “in water”, and both,” Angewandte Chemie International Edition, vol. 47, no. 15, pp. 2849–2852, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. Q.-Y. Zhang, B.-K. Liu, W.-Q. Chen, Q. Wu, and X. F. Lin, “A green protocol for synthesis of benzo-fused N,S-, N,O- and N,N-heterocycles in water,” Green Chemistry, vol. 10, no. 9, pp. 972–977, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. L. D. S. Yadav, S. Singh, and V. K. Rai, “Catalyst-free, step and pot economic, efficient mercaptoacetylative cyclisation in H2O: synthesis of 3-mercaptocoumarins,” Green Chemistry, vol. 11, no. 6, pp. 878–882, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. J. W. Yang, M. T. Hechavarria Fouseca, and B. List, “A metal-free transfer hydrogenation: organocatalytic conjugate reduction of α, β-unsaturated aldehydes,” Angewandte Chemie International Edition, vol. 43, no. 48, pp. 6660–6662, 2004.
  37. A. E. Abdalla, D. Tirzite, G. Tirzitis, and J. P. Roozen, “Antioxidant activity of 1,4-dihydropyridine derivatives in β-carotene-methyl linoleate, sunflower oil and emulsions,” Food Chemistry, vol. 66, no. 2, pp. 189–195, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. R. A. Olek, W. Ziolkowski, J. J. Kaczor, L. Greci, J. Popinigis, and J. Antosiewicz, “Antioxidant activity of NADH and its analogue—an in vitro study,” Journal of Biochemistry and Molecular Biology, vol. 37, no. 4, pp. 416–421, 2004. View at Scopus
  39. B. E. Norcross, G. Clement, and M. Weinstein, “The Hantzsch pyridine synthesis: a factorial design experiment for the introductory organic laboratory,” Journal of Chemical Education, vol. 46, no. 10, pp. 694–695, 1969. View at Scopus
  40. A. P. Dicks, “A review of aqueous organic reactions for the undergraduate teaching laboratory,” Green Chemistry Letters and Reviews, vol. 2, no. 1, pp. 9–21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. Material safety data sheet, http://msds.chem.ox.ac.uk/AM/ammonium_acetate.
  42. Material safety data sheet, http://msds.chem.ox.ac.uk/AM/ammonia_anhydrous.
  43. Material safety data sheet, http://msds.chem.ox.ac.uk/AM/ammonia_hydroxide.
  44. Material safety data sheet, http://msds.chem.ox.ac.uk/PA/paraformaldehyde.
  45. Material safety data sheet, http://msds.chem.ox.ac.uk/FO/formaldehyde.
  46. F. Tamaddon, Z. Razmi, and A. A. Jafari, “Synthesis of 3, 4-dihydropyrimidin-2(1H)-ones and 1, 4-dihydropyridines using ammonium carbonate in water,” Tetrahedron Letters, vol. 51, no. 8, pp. 1187–1189, 2010. View at Publisher · View at Google Scholar