About this Journal Submit a Manuscript Table of Contents
ISRN Organic Chemistry
Volume 2012 (2012), Article ID 760517, 7 pages
http://dx.doi.org/10.5402/2012/760517
Research Article

Synthesis and Biological Evaluation of Some Novel 5-[(3-Aralkyl Amido/Imidoalkyl) Phenyl]-1,2,4-Triazolo[3,4-b]-1,3,4-Thiadiazines as Antiviral Agents

1Department of Chemistry, University of Lucknow, Lucknow 226 007, India
2Division of Microbiology, Central Drug Research Institute, Lucknow 226001, India

Received 28 April 2012; Accepted 7 June 2012

Academic Editors: A. Barbero and E. Lee-Ruff

Copyright © 2012 Vinod Kumar Pandey et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. P. Aytaç, B. Tozkoparan, F. B. Kaynak, G. Aktay, Ö. Göktaş, and S. Ünüvar, “Synthesis of 3,6-disubstituted 7H-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines as novel analgesic/anti-inflammatory compounds,” European Journal of Medicinal Chemistry, vol. 44, no. 11, pp. 4528–4538, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Nami, M. Forozani, V. Khosravimoghadam, and R. Taherinasam, “Synthesis and characterization of mono and bicycle heterocyclic derivatives containing 1,2,4-triazole, 1,3,4-thiadiazine and 1,3-thiazole ring,” E-Journal of Chemistry, vol. 9, no. 1, pp. 161–166, 2012.
  3. O. Prakash, D. K. Aneja, K. Hussain, et al., “Synthesis and biological evaluation of dihydroindeno and indeno [1,2-e] [1,2,4] triazolo [3,4-b][1, 3, 4] thiadiazines as antimicrobial agents,” European Journal of Medicinal Chemistry, vol. 46, no. 10, pp. 5065–5073, 2011. View at Publisher · View at Google Scholar
  4. M. Altintop, Z. A. Kaplancikli, G. T. Zitouni, et al., “Synthesis and anticandidal activity of new triazolo thiadiazine derivatives,” European Journal of Medicinal Chemistry, vol. 46, no. 11, pp. 5562–5566, 2011. View at Publisher · View at Google Scholar
  5. R. Mohammad, S. Ali, R. Mahsa, and B. Mehdi, “Synthesis and antibacterial evaluation of new heterocyclic system: [1,2,4] triazolo-[3′, 4′:6, 1] pyridazino-[4, 3-e] [1,3,4] thiadiazine,” Heterocyclic Communications, vol. 18, no. 1, pp. 39–42, 2012. View at Publisher · View at Google Scholar
  6. S. M. I. Badr and R. M. Barwa, “Synthesis of some new [1,2,4]triazolo[3,4-b][1,3,4]thiadiazines and [1,2,4]triazolo[3,4-b][1,3,4] thiadiazoles starting from 5-nitro-2-furoic acid and evaluation of their antimicrobial activity,” Bioorganic and Medicinal Chemistry, vol. 19, no. 15, pp. 4506–4512, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. G. V. S. Kumar, Y. R. Prasad, B. P. Mallikarjuna, and S. M. Chandrashekar, “Synthesis and pharmacological evaluation of clubbed isopropylthiazole derived triazolothiadiazoles, triazolothiadiazines and mannich bases as potential antimicrobial and antitubercular agents,” European Journal of Medicinal Chemistry, vol. 45, no. 11, pp. 5120–5129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. F. El Shehry, A. A. Abu-Hashem, and E. M. El-Telbani, “Synthesis of 3-((2,4-dichlorophenoxy)methyl)-1,2,4-triazolo(thiadiazoles and thiadiazines) as anti-inflammatory and molluscicidal agents,” European Journal of Medicinal Chemistry, vol. 45, no. 5, pp. 1906–1911, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. B. S. Holla, P. M. Akberali, and M. K. Shivananda, “Studies on nitrophenylfuran derivatives: part XII. Synthesis, characterization, antibacterial and antiviral activities of some nitrophenylfurfurylidene-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines,” II Farmaco, vol. 56, no. 12, pp. 919–927, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. N. A. Al-Masoudi and Y. A. Al-Soud, “New sulphonamide and carboxamide derivatives of acyclic C-nucleosides of triazolo-thiadiazole and the thiadiazine analogues. Synthesis, anti-HIV, and antitumor activities. Part 2,” Nucleosides, Nucleotides and Nucleic Acids, vol. 27, no. 9, pp. 1034–1044, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Dutta, P. N. Rangarajan, S. Vrati, and A. Basu, “Japanese encephalitis: pathogenesis, prophylactics and therapeutics,” Current Science, vol. 98, no. 3, pp. 326–334, 2010. View at Scopus
  12. R. W. Sidwell and J. H. Huffman, “Use of disposable micro tissue culture plates for antiviral and interferon induction studies,” Applied Microbiology, vol. 22, no. 5, pp. 797–801, 1971. View at Scopus
  13. R. P. Tripathi, V. Singh, A. R. Khan, and A. P. Bhaduri, “Synthesis and antiviral activities of 3-O-(aminoalkyl)-1, 2-O-isopropylidene-D-gluco(xylo)furanoses,” Indian Journal of Chemistry B, vol. 34, pp. 791–795, 1995.
  14. E. Bedows and G. M. Hatfield, “An investigation of the antiviral activity of Podophyllum peltatum,” Journal of Natural Products, vol. 45, no. 6, pp. 725–729, 1982. View at Scopus
  15. V. K. Pandey, S. Yadava, K. Chandra, and M. N. Joshi, “Antiviral studies of 7-arylamido/lmido-alkyl-2,3-dihydro-2,3-diphenyl-1,3-benzoxazine-4-ones,” Indian Drugs, vol. 36, no. 8, pp. 532–534, 1999. View at Scopus
  16. N. J. Schmidt, Diagnostic Procedure for Viral and Rickettsial Diseases, American Public Health Association, New York, NY, USA, 3rd edition, 1964, edited by E. H. Lennette and N. J. Schmidt.
  17. L. J. Reed and H. Muench, “A simple method of estimating fifty per cent endpoints,” American Journal of Epidemiology, vol. 27, no. 3, pp. 493–497, 1938. View at Scopus
  18. V. K. Pandey, S. Tusi, Z. Tusi, M. Joshi, and S. Bajpai, “Synthesis and biological activity of substituted 2,4,6-s-triazines,” Acta Pharmaceutica, vol. 54, no. 1, pp. 1–12, 2004. View at Scopus
  19. H. K. Gakhar and J. K. Gill, “Pyrimido[4,5-e](1,2,4)-triazolo[3,4-b](1,3,4)-thiadiazine-7,9(6 H8 H)-diones,” Monatshefte für Chemie, vol. 116, no. 5, pp. 633–637, 1985. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Einhorn and J. Tscherniac, Comprehensive Organic Name Reactions and Reagents, John Wiley & Sons, New York, NY, USA, 2010.
  21. B. R. Nathani, K. S. Pandya, M. M. Jeni, D. J. Patel, and M. R. Patel, “Synthesis and antimicrobial activity of some new isatin derivatives,” Der Chemica Sinica, vol. 2, no. 6, pp. 97–103, 2011.